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ABSTRACT

This final report is a result of a study performed for RADC under
Contract Number F30602-69C-0042. The purpose of the study was to fit one
or more prior distributions to 6 = MIBF = Mean Time Between Failure.

In particular, the objectives were three:

i) Establish criteria for data that would be suitable
for fitting prior distributions to ¢ = MTHF.

ii) Develop methods of ritting and fit one or more
prior distributions.

iii) Perform robustness analysis of fitted prior
distributions.

It was discovered that if the number of identical equipments and number ;
of failures observed per equipment are relatively small, special methods of i
fitting are required. For the data used in this study, the inverted gamma '
distribution turned out to be a good prior fit.
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EVALUATION

A thorough review of the available litersture on Bayesian reliability
(as listed in Section 1l of this report) will reveal that very little,
if any, effort has been directed towmards developing msthods for fitting

~ prier distributions to empirical data. Usually, priors are determined

through engineering judgment, personal experience, and wide-scale
assumptions. Such means of developing priors are unsatisfactory if
Bayes' methods are to be used in equipment reliability demonstration.

The objectives of this Phase I study were to (a) establish data

criteria for use in fitting priors, (b) develop methods of fitting

and actually fit one or more priors, and (c) perform robustness

analysis of fitted priors. The results of Phase I showv, for the first
time, how pricrs can be fitted to empirical data, the amount and type

of data required, and the effect on the posterior distribution of varying
parameters of the prior distribution.

Each of the objectives of Phase I was successfully completed. Section 5
shovs, for three forme of operational data, the minimm values of "n"
(number of equipments) and "k" (numbsr of failures per equipment) required
for fitting & valid prior distribution to MIEF. The results of this
section provide & firm foundation on vhich future data collection

programs for fitting priors csn be besed. Bection 4 presents methods of
fitting prior distridbutions and includes seven inverted gamms priors
fitted to espirical data collected on seven different types of equipment.
These results confirm the precticality of the Bayes' method in relisdility
demonstration, and provide justification for the use of the inverted
gawes a8 tbe prior distribution oo oquipment MIBEF. Section 7 contains

the results of the robustness analysis performed to investigate the
effecta of errors in estimating the scale and shape pareamsters of the
inverted gspws prior ca the posterior inverted gamsa distribution. In
addition, as previously stated, Section 11 inclundes & comprehensive,
76-entry biuvliography of sources cn Bayes' relisdility.

The methods developed in this study were based on "equipmsnt” level data,
thus it was sssumed that the conditional distridution of time-to-fatilure
was assumed to be exponentisl. Bowevar, it should be noted thet the
methods given here Gre generally srplicsdle whatever the form of the
condttional distridution.

Phase I results vill serve as ispo
vhich 1s scheduled to start in Fedruary 1 The
data criteria established in Phase I vill de used to it additiooal

i
!
I
!
:

priors on other equipment types in Phese II. In addition, this pext

A T e TR > e - ¢

I GRVON 49401

B RO TR AN AP IR




phase vill include the investigation of methods of combining priors from
sfmilar, but not identical, equipment. Phase II objectives also incl ude
the establishment of plans for developing and implementing Bayesian
reliability demonstration tests, as a prelude to the projected FY-71
Phase III study.

Reliability Engineering Section
Reliability Breach




Section 0.0

Section 1.0
1.1

.2

1.3

1.4

Section 2.0
2.1

Wiwwwiw N

PRPDPD
o o

Section 3.0

Section 4.0
h L] l

.

-
-

Wb R

R R SN SRS O A STV
* »
TR W

3
-
-

EFEEEESEEEEEE ;l-"

k.3.1

4.3.2

b.3.3
Section 5.0

5.1
5.2

TABLE OF CONTENIS

SIWA-RYO 9 e e & 8 & 2 s £ & & e s * & * s *

INTRODUCTION. +. « o & o o o o o o« o s s o o &
Objective of the Study . . . .
Introduction to Bayes Methods in Reliability
The Central Problem. . . . . « . « +» . .
Definitions and Assumptions. . . . . . . . .

» s e @ w

DATA COLLECTION . . « « ¢ ¢ o o « o «
Types of Data. . . . . . . .
Data Collection Plan . . . .
Data Collected . . . . .
Hughes Internal Sources.
Government Data Sources.
Data Sources . . . . . .
Summary of Data Availability .

« o e e
e &« » =
.

e o & & a» .

. « o a e o

e« & & s 3 = e ¢

® & @ 8 8 e & =
.

FUNCTIONAL LEVEL - TEE CONDITIORAL DISTRIBUTION

e ® o 5 & o o @

e e s o

* o e o e o

METHODS OF FITTING PRIOR DISTRIBUTIONS AND RESULTS. . .

Fitting tbe Prior Distribution When the Family
is Unspecified. . . . . . . . . .

Methods of Fitting Prior D:lstritutions When the

Family is Spacified . . . . . . . ¢ o v ¢ o
Introduction . « + + ¢« ¢ & ¢ & .
Parameter Estimation . . . . . .
Parameter Estimntion for Type 1 Data .
Parameter Estimation for Type 23 Data.
Parameter Estimation for Type 2b Data.
Goodness of Fit. . . . . . . . « « . .
The X2 TeBL. + « « « « v e o v v o o s
The X2 Test for Type 1 Data. - . . . .

e ® e s ® o a
e o o . .
e o o e e+ ¢

.« .

* e e & & e o

« 4 & o s

Thex«?reszror'rypeaanau

Thex Test for Type 25 Data . . . . « .+ . &
Results and Development of Prior Distributiocns
for Data Collected. . .+ . - « ¢« ¢ ¢ & ¢ o &
Remults of Pitting the Prior Dietribution Wken
Family is Unspecified . . . . . . . . .
Rasults of Fitting the Priar Dlltrimtion Hhen
FPamily is Specifieda . . . . . . .

Remarks on the Fitted Prior m-mmuma. ¢ .o

REQUIREMENTS FOR SUITABLE A PRIORI DATA . . . .
The Type of Data . . . . + « ¢ s ¢« v ¢ o o o &

The mnt of k“ . . L4 L] . L] . - Ll . L] » Ll L d L]

vii

* .

PAGE

[
W

88&E ¥83 3 §




¢ i ro——

PAGE .

5 2 l The Amt Of mt&-F&mily UnBRCiried . 0 . LI ¥ 3 * e . . %
5.2-2 Tb.Q Amt of lht& - Mly SpeCified * s 3 o« o * e e » . 51
5.2.2.1 Data Requiremexts When the Observed

st‘ti'tic i. e . . ] L] . L] . - . . . » . - [] . - . L] . . 51
5.2.2.2 Data Requirements Wher, the Observed Statistic

1s the Number of Failures in Time T. . . . . . . . . . . 58 }

Section 6.0 ANALYSIS FOR DATA COMBINATION. . . « « « « « « o « o o . . 6k

i

Section 7.0 ROBUSTNESS ANALYSIS . « « v « ¢ ¢ « v o o o o o o o s o . 66 ]

Section 8.0 CONCLUSIONS AND RECOMMENDATIONS. . &« « « « « ¢ « « « o s - 95 ,5

8.1 LONCLUBLONB + « + « ¢ v o o o s o o b o et e e e e e 95 i

8.2 Recommendations . . . . . « ¢ ¢ ¢« ¢ o ¢ v v o 0 o o o o u 95 ’

Section 9.0 APPERDIX + + « « « v v v o v o o s v v o v v oo o v oo 96

9.1 The Inverted Gamma Prior Distribution . . . . . . . . . . 96

9.2 The Marginal Distributions. . . - « . « « ¢ » o« o « . . . 98 :

9.3 Transformations on the Inverted Gamma Distxribution. . . . 100 ‘

9.4 Identifiability of the Prior Distribution . v« <. 100 !

9.5 Limiting Behavior of the Marginal Density f (6) R [0 -3 :
9!5'1 Anemtmmrl L] L] > L] ] - - » L] * L ] . - L . . L ] . » 102
Section 10.0 COMPUTER PROGRAMB DEVELOPED. . . - « « o « o + ¢ « « + « . 106

mol m“mmiﬂ h‘w. . . . . . . . . . » . . L) - . . - 106 r]
10.1.1 PR« it e et e e e e e e e e e e e e e e e . 106
10.1.2 B - - Lo |
lo.2 smtim.. lllll s 8 & & & 8 9 * & ¢ e » & ll5 .

mla.l "M.a"tlﬂ'l..t.... ...... * 4 e 4 & o 115
! m02.2 "hw. 12"' - » * . L] . L[] . . - . L] . . L] - - * . . . . 125
| Section 11.0 REFPERENCES AND BIBLIOGRAPHY. . + « « « « « o o v « o o - . 132
1.1 Referencesd. . . « . ¢ « o + s + o o = o o o o o o o e 133
u.a mmmm--.¢.-......-o-.....--. l3h

{

i

H

!

‘i.

|

viit '




LIST OF FIGURES

FIGURE PAGE i
1.3 Variables Involved in Fitting a Prior Distribution . . . 6 4
k.3.2.1 Observed and Theoretical Marginal Distributiors

Dota Set Number ODE . . . « « « o v ¢ o v o o o o o . W
k.3.2.2 Observed and Theoretical Marginal Distributions

Data Set NMumber Two . . . . . . . . . 35
4.3.2.3 Observed and Theoretical Marginal Distributions

Data Set Number Four. . . . . 30
k.3.2.4 Observed and Theoretical mrgina.l Distributiona

Data Set Number Five. . . . . . . ¢« ¢« ¢ ¢ v & o v o« & . 37
4.3.2.5 Observed and Theoretical Marginal Distributions

Deta Set Rumber Six . . . . . . . 38
k.3.2.6 Observed and Theoretical Marginal Diatrihutiona

Data Set Number Seven . . . . . . t e e e e s e e s e 39
4.3.2.7 Observed and Theoretical Marginal Distributions

Data Set Number E1ght . . « « « « ¢ « o o « « o ko
k.3.2.8 Flot of Theoretical Prior Distri™tion Datz Set

Number Ome. . . « « « « « « . . al
k.3.2.9 Plct of Theoretical Prior Diatrimtion Data Set

Number TWO. « « &« « &+ o o o + « o o« & 42
4.3.2.10 Plot of Theoretical Prior Distritation Data Set

Rumber FOUr « « ¢« + « o « o o = o & 3
L.3.2.11 Plot of Tneoretical Prior Diutributim Data Set

Number ®ive . . . . . . « .+ « « .« . « e e 111
4.3.2.12 Plot of Theoretical Priar Distributicn Dats Set

Bumber SIX. . . . . ¢ v ¢ 4 it e e e e e e e e e 45
4.3.2.13 Plot of Theoretical Prior mm-ibution Data Set

Number Seven. . . . M
.3.2.1h4 Plot of Thearetical Prior Distribution Dnt.a. 8ct

Number Eight. . . . « ¢ ¢ ¢« ¢ ¢ ¢ o o o 2 + o o o o o & W
5.2.2.1.2 Graphs of Density Punctious. . . . . . . . . . ... .. 5h
7.0 Nean and Selected Percentiles-Prior Tnverted

Gaman Distribution, A=3 . . . . . . . . ¢ o ¢ v 4 .. 69
7.1 Posterior Nean and Sclected Percentiles-Iuverted

Gumma Distribution, Xe30, P00, Am3. . . . . . . .. 70

7.2 Posterior Mean aud Selected centiles-Inverted

Cesma Distribution, K=30, 9100, A3 . . . . . . . . . 71
7.3 Posteriar Mean and Selected ntiles-Inverted

Gezma Distridution, K=30, 9=50, A=3. . . . . . . . . . T2
7.4 Posteriar Mean and Selected ntiles-Iuverted

Gamma Distridution, K=20, B=200, A=3 . . . . .

.
-
.

73

ix




b i
t
i

7.9
7.10

7.12
7.13
7.14
7T.15
7.16
T-17
T.18
7.19

7.23
7.2k
7.25

9.5.1

Posterior Mean and Selectad Percentiles-Inverted

Gamma Distribution, K=20, g=100, A=3 . . . . . .

Posterior Mean and Selected centiles-Inverted

Gemme, Distribution, K=20, 650, A=3. . . . . . .

Posterior Mean and Selected Percentiles-Inverted
Gamme Distribution, K10, §=200, A=3 . . . . .
Posterior Mean and Selected Percentiles-Inverted

Gemma Distribution, K=10, §=100, A=3 . . . . . . .

Posterior Me=an and Selected Percantiles-Inverted
Gamma Distritution; K=10, 5, A=3 . . . ..
Posterior Mean snd Selected Percentiles-Inverted

Gamma Distribution, K=5, Q-aoo, A=3. . ...

Posterior Mean and Selected, Percentiles-Inverted

Gemma Distribution, Ke5, Guloo, 23 e v e e

Posterior Mean and Selected Percentiles-Inverted

Gamma Distribution, K=5, 850, A=3 . . . . . . . .

Mean and Selected Percentiles-Prior Inverted

Garme. Distribution,as200. . . . . & . . . . o o . .

Posterior Mean and SelectedAPercentiles-Inverted
Camma. Distribution, K=30, ¢=200, @=200. . . . .
Posterior Mean and Selected Percentiles-Inverted

Gemma Distribution, K=30, §=100, o=200. . . . . . .

Tosterior Mean and Selected, Percentiles-Inverted
Gamma Distribution, K=30, 6&50, o=200 . . . ..
Pesterior Mean and Selected Percentiles-Inverted
Gamme. Distribution, K=20, §=200, =200 . . . . .
Posterior Mean and Selected Percentiles-Inverted
Gamma Distribtution, K=20, §=100, a=200 . . . .
Posterior Mean and Selected Percentiles-Inverted

Gamma Distribution, K=20, 850, q=200 . . . . . .

Posterior Mean and Selected,Percentiles-Inverted
Gemme Distribution, k=10, §=200, =200 . . . .
Posterior Mean and Selected, Percentiles-Inverted
Gamma Distribution, K~10, B=102, a=200. . . . .
Posterior Mean and Selected Percentiles-Inverted

Geama Distribution, K=10, §=50 =200 . . . . . .

Posterior Mean and Selected Percentiles-Inverted
Gamma Distribution, K=5, §w200, =200. . . . .
Posterior Mean and Selected Percentiles-Inverted
Gamma Distribution, K=5, =100, a=200 . . . . .
Pouterior Mean and Selected Percentiles-Inverted
Gamma Distribution, KeS5, f=50, am200 . . . . .

Graphs of Prior and Marginal Density Functions .

-----

Th
75
76

78
9
81
82

83

85

K

91

' 3 8

105

S

o




TARLE
2.3.1.1

2.3.2.1

4.3.1

k.3.2.1

i _j k.3.2.2
5.2.2.1.1

5.2.2.1.3.a

5.2.2.1.3.%

' 5.2.2.2.1

5.2.2.2.2

LIST OF TABLES

Hughes Aircraft Company Acquired Data . . .
Tinker Air Force Base Acquired Data . .

Results of Data Analysis by the Krutchkoff-
Rutberford Method . . . . .

Field Data Fitted To Inverted Gamms Prior

Distributions . . . . . .

Xe Tests For Inverted Garma end Welbull
Prior Distritutioms. . . .

Expected and Observed Values for xz Teste
Under Each of 3 Hypothesized Priors (n=100).

Number of X° Tests Passed {Out of 400} Under
Each of 3 Hypotheeized Priors, Takea at .90

Level. . . . . . .

Number of xa Tests Passed (Qut of 400) Under
Each of 3 Hypothesized Priors, Taken at .95
Level. . . . . . . « v ¢ «

Expected and Observed Values for )(2 Tests
Under Each of 3 Hypothesized Priors (n=200).

Number of X2 Tests Passed (Out of 4OO) Under
Each of 3 Hypothesized Friors, Taken at Both

.90 and .95 levels . . . .

xi

e & o o

e s 0

e & ¢ ©o @

" * & ¢ e & o =

*® & o & o & ¢ 4 & v & * s

* ¢ e

32

55

5T

59

62




0.0 SUMMARY

The knowledge of the prior distribution is central to the efficient use
of Bayes methods in reliability estimation and demonstration, This study

presents methods and examples of fitting prior distributions when the data
avallable is:

1) n sample MTEF's on n identical equipments,

ii) n observations on the number of failures occurring in a fixed time
T for n identical equipments,

This data must be used since samples from the prior distribution itsslf,
i.e,, the true MTBF, are unobtainable, Two cases were considered: the family
of the prior distribution being specified and unspecified, In case the
analyst is unwilling to specify the family the methods are not wholly satis-
factory; the most suitable being a method due to Krutchkoff and Rutherford
which requires the prior distribution belong to the Pearson class, When the
family is specified (e.g,, inverted gamma) methods are presented which use
the ¥nown marginal distribution to fit the prior distribution, Some diffi-
culty is experienced when the ‘wmple sizes (K;) for the n sample MTEF's are
not all identical and small, .- :&is case a mixed model for the marginal
distribution is used, If the {i;; are all large (roughly > 30) even though
not identical the marginal dn.si.riu“ion approaches the prior distribution

rapidly, If n and {K;} are both large the data is fitted directly to the
prior distribution,

The results are given in the following table:

General Methods of Fitting Prior Distributions

Family Unspecified Estimate first four moments
(all values of n aid {Ki}). of prior distribution from
‘ data and vse Pearson class,

Family Specified

ﬁr large, n 2

1ge enough to use X test, Treat data as though 1t came
from prior distribution and
use classical methods,

{K;} small, n Fit data to mown marginal
large eﬂougu to use mixec using classical methods,
test,




F i
e
In the text, specific results are given as to the meaning of "large",
n = pumber of identical equipments, ) ,,
|
‘A K; = number of failures observed on the i'l equipment. !
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1.0 INTRODUCTION

1.1l OBJECTIVE OF THE STUDY
There are a number of measures of reliability. The most important are
1) Mean Time Between Failure (MTEF).
ii) Failure Rate.
1ii) Probability of Survival for a fixed time T.

iv) Time, say x_, for which the probability of survival is p. That is,
xp is the (l-p)th quantile of the time to failure distribution.

It is customary in equipment/system development to place certain specifica-
tions on one or more of the above measures. Demonstration tests (in statisti-
cal language hypothesis tests) are a fundamental tool in verifying that these
specifications have been met. Unfortunately, the demonstration tests are
conducted in an enviromment of

¢ High reliability requirements.
® Limited funds.
® Short time availlable.

Generally, the precision of the demonstration test increases as the number of
failures observed increases. But high reliablility requirements mean long
times to observe failures. On the other hand, low producer and consumer
risks are desired and this also means long test times. This creates a cost/
time problem #hich is apparently unsolvable by classical methods. In fact,
Bayes methods apparently hold the most promise in solving the cost/time
problem of demonstration tests.

I many sampling situations, Baye:r methods are not applicable because
the unknown parameter (here, MI'BF, failure rate, etc.) cannot be considered
a random variable, which is a "must" to use Bayes methods. However, it is
clear that in reliability the parameter can often, if not always, be con-
sidered a random variable. Consider a computer manufactured by a particular
Company to a particular decign; each successive computer differing in serial
number and parts. Because of these part (not part type) differences and
other differences, each computer will possess a different true (but unknown)
MTBF = 6 and hence, MI'BF = 6 may be considered a random variable. The essence
of Bayes methods is tha% a probability distribution is assumed to exist on the
parameter (here, measure of reliability) in question. This probability



distritution is called the prior distribtution.*

The measure of reliability considered throughout this study is 1) above,
namely, the very important MTEF = §. Not only is MTEF most commonly used as
a measure of reliability, it has the advantage that it is a paremeter in the
time to failure distribution, which results in variables type data rather
than 1ii) and iv) above, which result in attributes data. Thus, MTEF permits
& parametric rather than a nonparametric approach.

In summary then, to use Bayes methods a prior distribution is needed.
The basic objective of this study s to fit one or more prior distributions
to MTEF = § for ground electronic equipments. In doing this, there are many
related questions so that the study oLjectives are more particularly stated
as:

i) Estatlish criteria for suitsble dsta for fitting prior distribu-
tions to @,

i1) Pt one or more prior distributions.
111) Perform robustness analysis of fitted prior distributioms.

All these objectives were accomplished and are discussed in the appropriate
sections.

The next section gives more detail and insight into the use of Bayes
methods in reliability.

1.2 INTRODUCTICH TO BAYES METHODS IN RELIABILITY

A classical lover one sided confidence interval for @ (MI'BF) consists of
s statement that

P(0 2 9,) = 1-Y, Y amall and 1s prepared after the data is available.
The probability can only be interpreted as a eonﬂdnnce. A classical \e.¥.,
MIL-8TD-761B) reliabdility democostration test consists of preselecting zi e.,
before tln date 1s gothered)

b= 0 (nm:coomhhm)mdsucamsriﬁ In order to
m.m@o tast 1t i» ulso recuired to "add" a 8y (specified 'MTEF)

‘and g o producer's risk. It 1; interesting and informstive to dwell on the

"ames” of 9, and §;, 1.e., minimm acceptable and specified respectively.
One xight , in viev of the "mne"ot&lthltio'vmldbemlled-xiu
accaptahle or simply acceptable 6. I this were so, things sould be very
mislesding. That is, 6y, O; are vell named nov. The name for §; depicts
vhat 1t really is: a prespecified lover confidence limit. The name for 8
depicts vhat it really is: an "add on" to odtain » unique test. Briefly, it
is consumers who desmnd tewts. They specify (§;,8). Once baving done this

the producer selects the ‘unigu) test suitable to him.

In the morw mathematical literaturse, this pricr distritutioun is u-sthn
called the Compounding or Mixiog distribution.

s el e 15
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Using Bayes methods it is possible to prepere a probability (as against
confidence) statement to the effect

P(6 2 ¢, |observed data) = 1- vy (1.2.1)

A unique Bayes demonstration test can be achieved with various "add ons" but
that is not the subject of this report. The important point is the condition-
ing random varisble "observed data" in (1.2.1) above. It is immaterial what
it is as long as it is a sufficient statistic for ¢. SBSmmetimes the vector

of failure times (xl, ceey xx) may be used and sometimes the observed MIBF

A
@ may be used. In any event to prepare (1.2.1), i.e., a Bayes confidence
interval,

P(6 2 @& |observed data = ’0\) = I g(Ol'O\) ae,
O

the Ecterior distribution of 6 is required. Here ve have illustrated it
and will continue to 1llustrate with the conditioning random variable 0.

Clearly,

&(e19) = ﬁlﬂ\.’%ldﬂl; r(a) # 0. (1.2.2)
£(9) -

Thus, to obtain a Bayes confidence interval one must have
i) The prior distribution g{e).
11) The saxpling distribtution of the conditioning Mtictic given 6,
i.e., r('a‘-te). ’ '
111) The nrsim.l disiributicn of the statistic r»('o‘)v.
Each of these distributions, particularly 1) and 1i1) above, play a vital
role in this report. The object is to fit g(e). The data gathared for this

study 1s at the equipment level and it 1s assumed throughout that the com-
diticnal distrijution of times to fuilure given §, i.e., f{xi9), 1s @ -

tial so that £{gle) 1s gammm. It is then relatively simpls to find £(§)
once the prior dlstridtution is specified aince _ : :

-r(?) - ] t(3|9)¢(e) M (1.2.3)
A ;

In scme cases the observed random variable is the mumber of failures (say x)
occurring in & fixed times period T so that the £{x19) is Fuisson and the
mrginel distribution of x is




£(x) = f £(x|0)g(0) ae (1.2.4)
o

Thus, of the four (4) distributions of (1.22), only two (2) are unknown in
the sense they must be estimated since the marginal distribution in the

denominator is obtainmable through g(e) azd £(819).

1.3 THE CENTRAL PROELEM

The central objective of this study is to fit a prior distribution to
scme reliability data; the central problem is that for a given plece of
equi pment the true ¢ is unknown and remsins unknown unless an infinite number
of failures are observed. Thus, in fitting g(6), one does not even have
random samples from g(8). To obtain a random sample from g(0) would be to
know the MIBF of an equipment exactly which is impossible. There are then
tvo sample sizes of concern. First, the number of "{dentical” equipments
saxpled which we call, hereafter, n. Second, there is the number of failure
times available on each equipment which, for the ith equipment, we call K,

and for all n equiptents we denote the set of K, as {Ki}n' The situation

is depicted below in Figure 1.3. The squares represent identical equipments.
In this case x represents lifetime.

1 2 n .
0 0, |- — — _,_len l
I *az *n
12 *2 *no

} | |

i | i
Xl xl X '

w *ax, .

T T T
1 2 n

FMgue 1.3 Varisbles Involved in
Fitting a Prior Distribution

v, ———




At first thought, one might be “empted to plot the 8-. (somebov weighted
for unequal K's) in a histogram and by usual methods fit some prior distribu-
tion. To see,that this is not correct, consider first the case of identical
K's. If the U's were plotted in s histogram and n taken very large the histo-

gram would look very much like £ .(9). We are essentislly "sumxing" over €

in the joint density hK(o,u) That is, each sample involves a pair

6 0 ) isl, ..., n but the 9 cmpouent is unobservable. Thus, each 9 may
be considered a random aa.nple rrcn b ¢ (9) In the case of unequal K's (but not

all necessarily differert) things get pessy quickly but & mixed population
model appears descriptive, {.e., each 6 is regarded as a random sample from

£ (8) = Pty @)+ ... s e, (8 (1.3.2)

number of identical Ki"

_ n
aleo Zp = 1. The numerator in P; is taken after remumbering tc obtain different K's

Where t 18 the number of distinct Ki'a and Py =

This model will be discussed in moye detail in Section 4.0.

The important point of this wvhoie dAiscussion is:
Whatever methods are developed for fitting the prica distrioution,
the data to be used will be data vhich 15 taken from the marginal
distribution ot from the prior distribution.

The next section gives definitions which will be usced thrmghmt thie
report.

1.4 DEFINITIONS AND ASSUMPTIONS
Symbol __Definitdon

n ’ The nunhcr of jdenticsl eq;ﬂmta \mad to ﬁt 'y
o prior distribution. o

K, Toe puwber of failures ¢mium on un 130 equipment.
N i1, ..., n.

& | Total tast tim for 4tB o@m

0 The uxknova MPR? of an equipment.

The runfos varisble dencting eitber time to fallure @
‘minber of fnilures ia e fixed time. The coatext will . .
- muke clear vhich is being discussed.

x A particular value of X.




Symbol Definition

X2 " The qth quantile of the Cul-Square distribution with

b u degrees of freedom.

&ly) The prior distribution on the random variatle ¢.

>g(ele) The posterior (conditional) distribution of 9 having
observed U.

r(é‘le) The conditional distribution of § for fixed 6.

fx(e) The ginal (or uncondicional) distribution of §
vhere § ic 'msed on K failures.

£(x) The marginel (or unconditional) distribution of time
to failure or number of fallures per fixed time T.
The context will make it clear which is being discussed.

£(x}e) The conditional distribution of time tc failure (or

failures per T) for fixed 6.

One of the important assumptions of this report is thnt, the conditioral
distribution of vime to failure for fixed & is erpomential:

-x/9

f{xis) » 1/6 e x,9 >0, (1.4.1)

Eence, the pusber of failures occurring in fixed time T {8 Potss n:
’T}ig > 4
£(x(€) = i—-x—;ﬂ@— T,8 >0 (1.4.2)
x = 0,1, ..

The witimate aim of fitting prior distributions in reliability is Bayec
demonstration tests. Since demonstration tests «re most generally appiied

 mt equijment/system lsvelo rather than part ‘evels the study vas restricted

¢ this level of data. For this reason, the exponential sswmumpiicn was felt
to be valid aince it has deen experienced repestedly and certain limit
theorems (e.g., the Drenick theorem) indicate an exponential distribution is
to b expected for complex equipment. However, the methods developed here

E-_% cable vhatever the form of the conditional distribution.
t n though far othar conditional distributions is that the

" arithmetic will raptidly become iantractable.
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SECTION 2.0 DATA COLLECTION

2.1 TYPES OF DATA

Failure data can occur in several forms. It is divided into twvo main
classes: attributes and variables data. The attributes situation occurs
when an equipment is operated and its survival or nonsurvival for time T
(usually mission time) is observed. Due to the nature of this type of data,
attributes dats was considered unusable for this study, therefore, no data of
this type was collected.

The variables data situation occurs wvhen the actual failure times are
available. These times occur by agreeing to stop testing eicher after a
fixed pumber of failures bave occurred or after a fixed time bas elapsed.
The former case is called a censored test and the latter is called a
truncated test. Often the failure times themselves are not uveilable but
the pair (@ = observed MI'BF, K = number of failures) is available.

2.2 DATA COLLECTION PIAN

The search for potential data sources wes {nitially limited %o Rughes
Alrcraft «nd Govermment sources. A complete and comprebensive search for
high qualil reliability data on ground electronic equipment wvas conducted
in all of Bughes Aircraft Divisions including the Qualiity, Relfability,
Effectiveness, Field Service Organizations and the major Governnent data
centers maintained by the U. 5. Govermment Agencies. Much data vas available
but due to the high quality restriction: equipment level with ¢ fairly large,
the smount of data useiul for the establishment of e nriori distributions was
greatly reduced. The data location effart in the later pltase of the search
included contacts in private industry. Due to the nature of the deta {NI'BF)
requested and proprietary rights of the contractor we could obtain nc data -
froe industry.

2.3 DATA COLIECTED
2.3.1 HUGHES INTERRAL SOURCES

The prisary source of high quality data for establishing a priari éis.
tridtncions vas Rugbes Alrcraft Company. The Bughes Asrospace Divisise bas
perfarmed AGREE tests on various Bughes built clectronic squipments. The
Hughes Ground Systems Group bas collectad data on its systems and equipsmat
for mapy years. This duta includes both hbantu‘ry and field Wa
data. ‘ »

mu.eaax.-umemuummm.e@mcutMan o

for utilisation in this study.




TABIE 2.3.1.1 KUGHES AIRCRAFT COMPANY ACQUIRED DATA

Assigned
| Deta Set Equipment n z Ki Type of Tests
’\ KNumber N
9. Iram Computer 28 Wi Lab {AGREE)
10. Malti-mode Storsge Tube | 20 24 1ab {AGREE)
Indicator (Display Tube)
11. Infrared Subsystem in 42 106 Lab (AGREE)
‘. Fire Control Systems
in (MG-13)
| 12. H-3118 Computers ) 43 2779 Lab/Field
13. Display Console 48 314 Lab/Field
| 1h. | H-3182 Converters D-A 19 102 Lab/Field
f 15. Magnetic Tape Units 1k 5 Lab/Field
} 16. Infrared Subsystem in 43 99 Lab (AGREE)
: Fire Control Systems
: (MA-1)
i 17. Rapid Tune Subsystem 12 41 Lab (AGREE)
|

2.3.2 GOVERNMFNT DATA SOURCES

The search for and acquisition of data from the major data centers main-
tained by the U. S. Govermment Agencies was done by direct contact. Because
of the vast amount of dats collected and available in the Government data
; centers, the efforts were directed to collecting only adequate and useful
P data. It was felt that a visit to the key data centers was a necessity to

; assure a thorough analysis of the type of data collected and the correct
! data retrieval wethods.

The agencies visited were:

1) U.S. Army Maintenance Command Logistic Data Center (USAMCLDC),
Lexington, Kentucky (TAERS data).

2) U. S. Navy, Washington, D.C. (3M data).

3) U. 5. Navy, Norfolk, Virginia, Statistical Engineering Brsnch,
RAVSECNORDIV.

4) vu. s. Naval Fleet Missile System Analysis and Evaluation Group
(FPMBAEG), Coroua, Cslifornia.

16
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5) U. S. Air Force logistics Command, Tinker Air Force Base, (klshome
City, Oklahoma (66-1 dsta).

There was no reliability data available oz electronic equimment at the
USAMC Logistic Data Cauter due to the lack cf control of serial number
agsignment to end items and usage. Indicsilug devices being almost non-
existent on electronic equipment resuited in no ucage time; therefore, no
MI'EF data is available through TAERS.

An additional request, suggested by tie USSMCLDC, vas made to the U. S.
Army Electronics Commend in Fort Monmouth, Wew Jersey, Applications Engineer-
ing Branch which resulted in MIEF data on raaic sets but was unsatisfactory
{n too small) for use in establishing a pricri distributicas.

The investigation of the 3M data collection system maintained by the
Navy yielded no reliability data; i.e., MIBF's. The Statistical Engireering
Branch in Norfolk, Virginia had some reliability data but not of the quality
of data necessary for this study. A trip to the U. 5. Naval Fleet Missile
Systems, Anslysis and Evalustion Group in Corone, Califcrnia was made in
search of MI'BF data on surface missile systems. Agmin, the quality (n too
small) of data was unsatisfactory for the prior distributions requirement.

A visit to the Reliability Branch at Tinker Alr Force Base in Cklahoma
City, Oklahoma resulted in acquisition of reliability data on ground coamuni-
cations radars. Table 2.3.2.1 is a list of equipments from which 66-1 form
data was obtained. All of this data was based on a fi. 4 time T of 4320
hours. .

TABIE 2.3.2.1 TINKER AIR FORCE BASE ACQUIRED DATA

Assligned
Data Set Equipment n 2!(1
Number
1. MI'I Reflector 41 173
2. HVPS (High Voltage TH | ¥75
Pover Supply)
3. Synchronizer 59 | 265
4 Oscilloscope 51 159
5. Video Amplifier ko 92
6. Synchronous Power Supply I 55 | 183
7. Search Indicator 58 | 266
8. Servo Amplifier 50 194
11
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2.3.3 DATA SOURCES

1. Iuterceptar Improvement Program IR Reliability Testing, Final
Report, May 100li, Rughes Aircvsit Company.

2. MMST Production Reliability Testi “First Reliability Sampling
Test Repart,” July 1957, "éecoﬁa geﬁability Sampling Test Report,”
October 1967, "Fourth and Final Reliability Sempling Test Report,
December 1967, Hughes Aircraft Company.

3. HA-J]_.‘{AN[ASQ-aﬁlMG-B Interceptor Improvement Program, "Rapid Tune
ellsbility Testing,” November-December 1905, Hughes Aircraft
Company .

. Iram Production Reliability Tests, Final Test Report, June 1368,
Hughes Alrcrafy Compeny.

2.3.4 SUMMRY OF DATA AVAIIABILITY

It i3 well-known in statistical andlysis that data can arise in two ways:
i) after the fact, ii) as & result of an experiment designed exyressly to
ansver spacific questions; for example, to fit a prior distribution. The re-
sults of this study meke it clear what to do if data is to be gathered ex-
essly to fit prior distributions. However; 1f time gnd mcney are not
gvailable for the secand approach sbove, already existing data must be used.
The results of the data search indicate there is not much suitable data
available. The reasons are primerily two

1) Not much data is svailable on large musbers of identical equipments.

2) Most data, already in existence, involves different numbers of
failures or different (fixed) test time on each equipment.

The two reasous above are somewhat different in character. The first,

primerily, causes pocr fits while the second makes it difficult to apply the
methods of this report at all.

Since large amounts of data ars not available through government sources,
the data for prior fits zust come from industry. The picture may eppear
umnecesgarily bleak: the results of Sections 4.0 ard 5.0 indicste data
requirenents vhich are not toc stringent.
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SECTION 3.0 PUNCTIOMAL 1EVEL - THE CONDITIONAL DISTRIBUTION

In using Bayesian methods the prior distribution receives a good deal
of attention - and rightly soc., However, in any analysis involving actual
data (X) the conditional distribution of (X10) must also be known, This
conditional p.d.f,, sometimes called a sampling distribution, receives leas
attention because, usual],y more is known about it than about the prior
distribution, For example, if several machines are turning out a large number
of bolte which can be classified only as good or bad then for fixed fraction
defective p the sampling distribution or conditional distribution is hyper-
geometric or binomial depending on the finiteness of the outputs, Thus,
often the physical process dictates the sampling distribution, In other cases ,
experience has dictated what to expect for & conditional distribution. That
is the casze here, We have assumed that the important Bayes testing applica-
tions will be made at the equipment. (computer, radar, oscilloscope, radio,
etc,) or system level, In this case, it has been demonstrated many times
both by limit thecrems and amp:lrical studies that if the random variable is
time to failure, a good descriptor of the conditional distribution is the
exponential, i.e,,

£(xie) = 1/p e.x/e x,8>0

= (0 elsewhere.

Then the distribution of the number of fallures in fixed time T is
Poisson, i,e,,

~T/s
£(xlo) = _e _ (T/a)* t, >0
x!
x=0 1, ...
= O elsewhere.

It should be understood that the methods given here are illustrated and fully
developed for the above two conditional distributions but that in gensral the
methods are applicable to any conditional distribution provided the identifi-
ability criterion is satisfied (see Appendix, Section 9.4).

If it should turn out that the conditional distribution is Weibull, them
the same goneral methods would apply with the exception that the prior
distribution would be two (2) variate, The major change then would be that
the arithmetic would become much more intricate.
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SECTION 4.0 METHODS OF FITTING PRICR DISTRIBUTIONS ARD RESULTS

SGARY |
Objective

The chjective of this section is to develop methods of fitting prior
distributions to 0 = MI'BF when data occurs it any one of three (3) forms.

Type 1 -~ The recorded data on & piece of equipment is number of failures
occurring in a fixed time T, T identical for all n equipments.

Type 2o - The rexorded date on a plece of equipment is the observed

MIEF, 6, and the nuwber of failures on each identical equipment
is a fixed K.

Type &b - The recorded data is the same as Type 2a but the mumber of
failures on each identical equipment may vary.

Two cases were considered: the family of the pricr distributfon unspecified
and specified. These are discussed in more detail in Section 4.2.1

Results .
Family of prior distribution unspecified, ell types of data.

For the family completely unspecified the methods found were
unsatisfactory for two reasons, the first being the most important.

1) They give only an empiricai distribution for the prior
and 4c not identify a family.

2) They are extremely camplex to apply.

If one is willing to assume the prior distribution belongs %o the
Pearson family, the Krutchkoff-Rutherford method is easy to apply
tut requires an encrmous mumber of 1d¢nt1ea1 equirment for good
results.

Mw distribution specified, all types of data.

When the family is specified, the steps in fitting the prior distri-
bution are simple esough.

1) Derive the marginel distrilution under the assumed prior femily,

1k
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2) Estimate the parameters of the marginal (and hence, prior)
distribution.

3) Perfmaxztest of goodness of fit to the expected
marginal distribution.

4) Assign appropriate prior distributiom.

In this report a prior inverted gaasa family vas assumed. The appropriate
marginal distributions are derived in Section 9.2. The appropriate steps
are discussed in detail in Sections 4.2.2 and 4.2.3. The results are given
in Section 4.3.2. Briefly, it was found that for type 1 data, of which
there vere eight (8) sets, sevaen (7) were found to be good inverted gamms
fits. There was no type 2» data and for type 2b data fits could not be
obtained becsuse K (the mmber of failuresavailable on each equipment)
varied toc much compared to the available number of units n.




4.1 FITTING THE PRIOR DISTRIBUTION WHEN THE FAMILY IS UNSPECIFIED

The case when the analyst is unwilling to assume aay knowledge of the
prior distribution is extremely difficult and remains, at this writing,
e3sentially an unsolved problem. An idea why can be obtained by looking at
the classical X2 test. Even in this test the family of the fitted distribu-

“ion must be specified. The methods we will discuss here all have one point
in common:

A A
They all use the data (xl, ceey xn) or (91, ceny en) to estimate the

MOMENTS of the prior distribution and then apply certain unigueness theorems
between a sequence of mrments and a distribution.

The extent to which a sequence of moments determines a unique probability
distribution AND how one is to discover, having a sequence of moments, to
which probability distribution it corresponds is a difficult problem (see
Shobat, J. A. and Tamarkin, J. D. (1943), The Problem of Moments, Amer. Math.
Society, New York). The methods to be discussed assume some of the difficul-
ties away.

One method of interest is given by John E. Roluh (Bayesian Estimation
of Mixing Distributions, Annals of Math. Statisties, Vol. 39, No. 4; August
1968). In this paper Dr. Rolph assumes a prior distribution (uniform) on the
family of prior distributions. Moreover, he assumes

1) The parameter space § is limited to [0,1], i.e., 0 = ¢ = 1.

11) The conditional distribution f(x|6) must be a polynomial in 6 and
be a discrete distribution.

The first assumption 1s needed to use the theorem that a probability
distribution ow [0,1] is uniquely defined by its moments. The first assump-
tion also permits the prior distribution on the family of prior distributions
to be sssigned to the moment sequences. The gsecond assumption permits the
marcinal distribution

£(x) =ﬁ(x|e)g(e)de
(o]

to be written
£(x) = 20 Byt

where ui is the 18 poment of the prior distribution. Thus, a sample
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(Xl: ceey Xn) from f(x) can be used to estimate the moments of the prior dis-
tribution and hence (because of uniqueness) estimate the prior distribution.
The estimate constructed in this manner is consistent.* The required computa -
tions are quite involved, surely requiring a computer program since a number
of relatively high order determinsnts are involved. Tris method is not
directly useful here since the restriction of 6 to [0,1] is untenable. How-
ever, it is mentioned since, in the exponential case, the reliability function
R(T) = e /% 1 pixeq,

always satisfies 0 < R(T) = 1. Thus, a prior distribution could be fitted
to R(T) and then a change of variable

6 = -1//nR

leads to a prior distribution on 6- It is not possible to do this in this
study because repeated observations with T fixed are not available from th=
data search. It should be noted though that if it were possible to make

successive Bernoulli trials then the conditional disvribution of f(le) is

a polynomial in R and the method (with the change of variable 6 = -1/£nR)
could be used to fit g(0).

Howard G. Tucker has given a method for estimating the prior distribution
when the conditional distribtution £(x|8) is Poisson (An Estimate of the Com-
pounding Distribution of a Compound Poisson Distribution, Theor. Prob. Appl.
8, 195-200, 1963). Here, the observed random variable x is not lifetime but
the number of failures occurring in fixed time T. Thus, it is assumed that
random samples (xl, ceey xn) are available from the marginal (discrete) dis-
tribution f(x). Ageir, the uniquenese of the moment sequence fur the prior
distribution is used to obtsin a consistent estimate of the prior distributiom.

Now, we assume throughout this study that for lifetimes, the conditional
distribution of lifetime given © is known and that though each of the n 6's
is unobservable (because & for each equipment is unknown) samples are available
from £(x|0), where ). represents lifetime. The semple sige from f(x}6) will
be denoted by Kj for the iR §. We are particularly concerned with methods

which can deal with the conditional distribution fxi(exilei) since often the

only information aveilable to the analyst ie the pair (Q,Ki) rather than the
lifetimes (x], veey XKy )

Tke case K; large i=1l, ..., n(e.g., K; > 30 all 1) can be dismissed more
or less out of hand since (see Section 9.5) the joint (marginal)
aistribution £(8), By, ..., 6,) can be used directly to £it the prior

distributior g(8). Before proceeding to other cases, it is well to

*
Roughly, a consistent estimate means that in the limit, i.e., as n -C©
the true prior distribution will be known exactly.
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clear up some terminology. 1In rellability work the estimation of the prior
distribution is called fitting a prior distribution. In some of the more
theoretical work, it is called: estimating the mixing distribution or some-
times: estimating the compounding distribution. Thus, in the statistical

literature, the prior distribution is sometimes called mixing distribution or
the compounding distribution.

The final method we discuss for fitting an unspecified prior distribu-
tion is the Krutchkoff-Rutherford (hereafter, K-R) method. Strictly speaking,
the K-R method is not usable when the prior distribution is completely un-
specified. The K-R method requires that the prior distribution belong te
the Pearson family of curves. This is not very restrictive since the Pearson
family is a rather large family (e.g., it includes the inverted gamma distri-
bution). It turns out that members of the Pearson family are uniquely deter-
mined by their first four moments. Thus, couputations are greatly simplified
(still requiring a computer program though) as regards the previous two
methods discussed. As in the other methods, the X-R method leads to consis-
tent estimates. There are two serious shortcomings with the K-R method:

i) It is not always usable.
ii) It bas large and unknown sampling errors.

The second shertcoming is common to all the methods discussed but is
particularly true of the K-R method because it uses only the first four
moments. The first shortcoming above 1s the most serious. If the sample
second central moment is negative the K-R method cannot be applied. The K-R
method was tried on seventeen sets {seventeen different types of equipment)
of data. Only four sets resulted in an estimate of the prior distribution,
the other thirteen resulting in negative sample second moments. The K-R
method is discussed in detail in Section 4.3.1 of this report.

4.2 METHODS OF FITTING PRICR DISTRIBUTIONS WHEN THE FAMILY IS SPECIFIED
4.2.1 INTRODUCTION
The problem of fitting a prior distribution is much simpler when the
prior distribution family is specified than when it is unspecified. Once a
distribution family (e.g., inverted gamma), is assumed for the prior then
fitting the prior is a two-fold procedure:
1) Obtaining estimates of the parameters of the prior distribution.

2) Testing the validity of the assumed prior by a goodness-of-fit
test.

Before discussing how 1) and 2) are carried out the general setup is
recalled:
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There is a prior distribution g(8) on the Parameter 6, where 0 is
alvays considered the mean of an exponential time-to-failure distrihution

(1.e., £(x|8) = (3/0) ™™ e). Semple values from some observable random

varliable are availlable.

In this study, only two types of observable

random variables are of sufficient practical interest to be investigated:

Type 1.

?ype 27

The observed random variable is the number, X, of failures of
a unit occurring in a fixed time T. X is a discrete variable,

taking on only the values 0,1,2, ... . Observations on X are
obtained by mtting n units on test for time T, and recording
the number of failures for each unit tx ceey xn}.

A ,
The observed random variable is the sample MI'BF, 6. Two cases
are poselble here:

A
Tyre 2a. Eech value of 6 ig based on a fixed number of failures, K.

Sample values of € are obtained by putting n units on
test and recording K lallure times Xy 19 +00s X for
2

i,k
each unit i=1, ..., n, and then computing ’
5 {2 6
8y = L K, i=1, ..., n. (Note that since g is a

surficient statistic for (xi 12 vt xi ), one has no

need of the x, 5 's once ei has bveen computed) e is &
3

continuous random variable defined on [0,o0],(assuming,
of course, that 6 also is).

A
Type 2b. The values of B are based on different values of K. This

is the case of practical interest. Data in the form of
Case 2a does not occur in practice, but Case 2a is in-
cluded because its treatment is analytically simpl: and
sheds light on Case 2b. For this casz, the observed data

is in the form of n pairs (ei,x ), where K, is the number

of failure times used for the computation of 91

Whether the observed data is of Type 1 or Type 2,
the situation is the same: the observed data is not from
the prior g(e), tut from the marginal distribution £(x)

(or f(e)) Hence, the data cannot be fitted "direx?ly"
to g(8). However, when g(6) is specified, f£(x)(£(g)) is
unliquely specified, since

£(e) =fg(e)f(.|e)de
o
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and f(x'e)(f(@ie)) is specified as a particular Poisson
(gnmma) distribution by the exponential assumption.

Since the parameters of f(x)(f(e)) include the parameters
of g(8), one need only estimate the rarameters of the
marginal to obtain estimates of the prior parameters.
Also, because of the unique association between the

Pprior and the marginal, a goodness of fit tast of the

marginal also serves cs a goodness of fit test for the
prio:n:.

In summary, a specified prior yields a specified mesxrginal contain-
ing the same parameters. Since the observed data comes from the
marginal, one can fit the data to the marginal using any appropriate
clessical methods of parameter estimation and goodness of fit tests.

In the process, the prior g(g) is also fitted.

In the follcwing sections, snccific formulas are derived for fitting
the prior when the specified prior family is the inverted gamma distri-

bution
= 1

The inverted gamma prior distribution is selected because it is
a two parsmeter distribution, very flexible, and the natural conjugate
when the conditional distribution is exponential. Also, when the
observed data is of Type 1 or Type 2 -above, the marginal density is
available in closed form.

1 o-(ofo) (4.2.1.1)

The method selected for estimating ters is the method »f
matching moments. For goodness of fit, the ¥* test is used.

4.2.2 PARAMETER ESTIMATION
4.2.2.1 PARAMETER ESTTMATION FOR TYPE 1 DATA

When the observed statistic is the number of failures, X, occurring
in fixed time T, then its distribution is Poisson,

e"T/e('r/e)x T, > O (%.2.2.1.1)

£(x{g) = =

X = 0,1, ...

aince the conditional distribution of time to failure for fixed 6 is
svnonential. With a specified inverted gemma prior distribution
“rorsmle %.2.1.1), the marginal distribution of X, derived in Section

.2, io glven by



x A
F(hex) [/ 7 -
£(x) = VT (ﬁ) (T:_a) ’ x=0,1, ... (4.2.2.1.2)

This is a negative binomisl distribution with

Mean - E(X) = %'1; (k.2.2.1.3)
2 _ AT(Twa) (k.2.2.1.4)

Variance = °x

2
E{xz)' = (E(x))2 + qxa - Ml&‘_‘l+ (lg-) 4.2.2.1.5)

Suppcse n sample values of X, (x,, ..., xn) are observed.
Then o the method of matching moment8, ve equate

f ‘(Exi)/n = \/a (k.2.2.1.6)

'(E "12)/“ . Eﬁ?ﬂ + (luT-)a (k.2.2.1.7)

. B The values of o aud ) vhich setisfy Forsulas 4.2.2.1,6
' §.2.2.1.7 are the required estimates, and are denoted by a,

The solution is

i
N N Xy
S A u T
z‘ » a= (h.aoanlta)
X ( &i) i,
g U B3
; n ‘\ n o
{% i\ T (4.20211-9) 2
;‘i ) . . &,
‘F These formilas vill de used in Section 4.3 to Jbtain estimates ¢
| of @ and A for eight sets of field data.
§.2.2.2 PARAMETER ESTIMATIOR FOR TYPE 28 TATA &
’ Type 2a data occurs vien the ubserved statistic is tho wle e, @
a, uybere Lbe &\ssm oumber of fatlures is s fixed integer X. The conditioml %3
ddstritution ¢ (ele), is gaoma, t.e., %
¥
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A X -1 €
z.(6le) = (g.) iy (6)" " e (4.2.2.2.1)

because of the assumption of an exvonential distributicn of time to feilures.

With a specified inverted gamms prior disiribution (Formuls 4.2.1.1), the
marginal distribution of 8, derived in Section 9.2, is given by

AN Kl
A I‘(xﬂ)'a)(xg\ *(x) A n
£.(68) = d —) (X! ~=-), §s0. (4.2.2.2.2)
K TTRITTXS ‘\aﬂ\;a oK/ \oxB/

Thie is an inverted Beta distribution with

E(a) = & , A>1 (k.2.2.2.3)
E(82) = K'l C \>2 (4.2.2.2.4)
*] mm 2.2.2.

A LA A
Suppose n sample values of @, (al, ceey en), are observed, each

based on K failures. Then the mcthod of matching moments leads tc the pair
of equations

PR
2. X;J.' (4.2.2.2.5)
-~ '\2
L Kl o o p
n K OOy (4.2.2.2.6)

For coamvepience, we cetg - 221 A K
' O e -
AA
Then the solution (a,\) 18 given by

A A2

-lll
AR2
=Ry

g

(4.2.2.2.7)
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4.2.2.3 PARAMETER ESTIMATION FCR TYFE 2b DATA

A
Y When the cbserved statistic is ¢, bLut the muwber of failures fyrom vhich
¢ is ccaputed varies from uait tS unit, a modification of the methed in
Section 4.2.2.2 can be used to obtain estimetes of o and ).

Type 2b data 18 available in the farm of n observations, each obseyvation

being a pair (‘é‘i,xi), i=1, ..., n, vhere the positive integer K. is the

1
A
number of faijuree uged to compute ei. Fow, for any value of Ki, if ve
A
consider the random variable € based on X, failures, ve obtairn from equations

1
4.2.2.2.3 and k.2.2.2.4.

A Q@
K 2 '
, i A2 o
B, (x_fi °) vty (b.2.2.3.2)

Since the above formulas are valid for any value of K1 s the
following procedure for estimating o aad ) from the sample data

{{e LK )):nl seems veagonable: Solve the equations
}H

£8

‘?i‘ = xS.‘I (b.2.2.3.3)
X
1 .2

R K
n R (VS 81§} (%.2.2.3.4)

8

A
for ¢ and \. For convenience, ve set m = -33-‘- and
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X
A 2 A
By = ) K;-%I 61 /n. Then the solution (a,ﬁ) is given by

A,8°

P 2k (h.2.2
Y .2.2.3.5)
2

&= (4.2.2.3.6)

Hote, that we have uhtsained point estimates of o and A without haviug
to consider vhat the form of the marginal density £(8) is when the Xi's
are different. This was possible because the expectationz in Formilas
4.2.2.3.1 and #.2.2.3.2 are independent of K;. However, when goodness of
fit 4z discussed in the next section, it will become necessary to specify
a model for the marginal distribution.

%.2.3 GCODNESS OF FIT

h.2.3.1 THE X2 TEST
The )(2 test was used in this study to test the goodness of fit of the
estimated prior distritutions. This section, wi’ll outline the steps involved

in taking the x2 test. The thecry behind the xa test (an’. airo the method
of matching momernts used in Sectiom 4.2.2) can be found iz meny standard
textbooks on Statistics.

Suppose ve have specified a family of protebility distributicns (e.g.,
negative binomial of form (4.2.2.1.2)), and have used sample data to estimate
q unknown parameters of the distribution. To test goodness ol fit:

1) Select a significauce level p (e.g., p = .90, p= .95).

2) Divide the range of the data into cells, so that et least 5 sample
values lie in each of the c cells.

3) Count the number of oLservations in each cell, and compute the
expected number of cbservaticns in each cell under the hypothesis
that the data arcse from the distribution with the estimated

parameters.

4) Denoting the observed and expected frequencies in each cell by 0,5

Ei’ isl, ..., ¢, compute

2k

o ——

WA

RSP ———
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2
2 ¢ (01'31)
x = (uogoaoltl)
£ T |

5) Compare Xa to the pt'h guantile of the X2 distribution

with c-g-1 degrees of freedom (denoted Xgp,c-q-l).

It

2 2
u.a' L] .2
X" > Xp, cugel (k.2.3.1.2)

reject the hypothesized distribution fam!ly (1.e., a bad fit
has been demonstrated).

If
2 2

X < Xp,e-q-1’
then accept (i.e., good fit).

(4.2.3.1.3)

We now return to the case of fitting the inverted garma oxr for
different types of marginal distributions. In each case, the X* test is
taken against the marginal, since that is the distribution from which the
sample data arises.

4.2.3.2 THE X2 TEST FOR TYPE 1 DATA

When the observed statistic is the number of failures, X, occurring in
fixed time T, Formula (%.2.2.1.2) is used to compute (i) = P(X=i) for
i=0,1,2, ... . For & sample of size n, the expectetion of X=i 1s nf(i).
Once tbe integers in the range of X are divided up into cells, the expected
number of observationz in each cell is easily summed.

With c cells, the xa test ig taken with (c-3) degrees of freedom,
since 2 unknown parameters (g and )\) were estimated.

4.2.3.3 THE X2 TEST FOR TYPE 2a DATA

A
When the observed statistic 1R 6 based on a fixed number, K, of failures,
then the marginal distribution fK(G)ia the inverted Beta distritution given

in Formula 4.2,2.2.2. For a sample size of n, the expected number of obser-
vations in a y cell with upper and lower end points, U and L, respectively,
is

nf rK('e\)dQ (k.2.3.3.1)
L

25




The integral i1s not available in closed form, but can be cvaluated by !
4 making a transformation to the Beta distribution and using a table of incom- ‘
1. plete Beta functions. If the tables do not have the appropriate parameter
{1 values for a particular case, it is always possible to use the computer tech-
niques of either numerical integration or simulation of the distribution. -

Since only 2 unknown parameters are estimated (K is known), the X2 test
is taken with degrees of freedom 3 less than the number of cells.

4.2.3.4 THE Xa TEST FOR TYFE 2b DATA

When the observed data consists of n pairs L(\ 8, K, )}, and a and X are

estimated as in Section 4.2.2.3, a modgl for the marginal distribution f(e)
must be specified in order to take a X text This model must account for
the different Ki 8 on which the values of 8 are based. The most reasonable

model seems to be the mixed population model, in which the marginal density 5
takes the form

o b s e s g

f{K }(e) = pyfy (e) + .. ptrxt(e), (k.2.3.4.1)

where t is the number of distinct Ki 8, and pi is the probability that a

random observation of e is based on K, failures (note P o= 1). The
i=1
£y (G)'s are, of course, the inverted Beta marginal densities (Formula
b
A !
4,2.2.2.2) for the case of & being based on Ki failures. The mixed population {
model assigns relative "welghts" to the "single population” marginals f (e) s ;

| in accordance with the "prior" probabilities pi of a sample 6 being bo.sed on
K, failures. It is easily verified that f ](e) is indeed a density:
o

i
3 Ay A A [ |
[fixi}(e)deuoj'glpifxi(a)de.zpi 5’ ’xi(e)de §

- Z:pa = 1. (4.2.3.4.2)

The model contains (t+2) unknown parameters which must be estimated
before a X test can be taken: a,x,pl, siey Py- The estimation of a and )\
has already been discussed. For a sample of n 6's, the P, are estimated by ’
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A number of 6'5 computed frowm l(1 failures

py, = (k.2.3.4.3)

n

for il, ..., t.

To compute the expected number of obscrvations in a Xa cell with upper
and lower end points U and L, respectively, we note that

U U
A, A AA
. jf{Ki}(")de «n¥p, ffxi(e)“ , (4.2.3.5.4)
L L
and the evaluation of the integrals on the right wvas discussed in Section
b.2.3.3.

With ¢ x2 cells, the xa txst ic taken with c-t-3 degrees of freedom,

since t+2 parameters of fs,K }(8) are estipated.
i< .

4.3 RESULTS AND DEVELOPMENT OF FRICR DISTRIBUTIONS FOR DATA COLLECTED

4.3.1 RESULTS OF FITTING THE PRICR DISTRIRUTYION WHEN THE FAMILY IS
UNSPECIFIED

The methods for fitting the prior distritution when the family is une
specified vere discussed in Section 4.1. Only une of these methods was nsed
for fitting actual field data in this study: the Krutchkoff-Putherford
method. The necessary type of data for using the X-R method (pairs (ei’xi))

was available for all 17 rets of data collectsd (See Section 2). Table
4.3.1 sumarizec the results of appiying the2 K-R method to the 17 sets of
data (oumbered as in Section 2). The formulas at the right are those used in

calculations. The m, 's are the unblased esiimatzs of the moments of g{9)

A
thet the K-R method calls for. The ui'a are eatimates of the contral moments
nt g(9) obtained by using the ralationships vetwsen the central moments and
the moments about O that beld for any distribution. Fioally, the estimates
Ol the i ars used Lo oblain estimates of £,,p, and X, which are used 1o

avcordance vitu criteria in Eld=rton's book {Reference 2) to identify uniquely
the appropriate Pearson curve Lype.

In Table 4,3.1, Pearson cuxve types sre identified for only Dsto Sets
Nos. 2, 1, 12, and 14, wkich are fitted as Typee VI, I, I, and IV respective-
ly. For the 13 other cases, the K-R meiacd fails to wark, since the esti-
mates of My a1e negative. The failure to it a pricr iu i3 out of i7 cases,

is, of zourse, no fault of vhe data, tut is inherent in the X-R method. Even
in the four cases in which a prior distribution is identified, the results

27
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are not very credible because of the large and unknown sampling errors in-
. herent in the method. To see Just how "bad" the errors are, some simulations
cf the K-R method (to be discussed in Section 5) vere carried out. The re-
sults indicate that the K-R method gives hopelessly bed resuvlts when used on
data of any practical sample size.

A list of the computer program used for the K-R method is given in
Section 10.

4.3.2 RESULTS OF FITAING THE PRIOR DISTRIBUTION WHEN THE FAMILY IS SPECIFIED

The results of fitting an inverted gamme prior distribution are snown
in Teble 4.3.2.1. The 8 sets of field data used are those given in Table
2.3.2.1. In all 8 sets of data, all units were put on test for time T = 4320
hours and the number of failures, X, recorded. (None of the other 9 sets or
data were based on fixed-time testing). Therefcre, the method of parametex
estimation used is tiat given in Section 4.2.2.1 (Type 1 data). Table
k.3.2.1 gives, for each set of data, the sample mean ):xiln, the sample variance

5‘12/11 - Qaci/n)e, and the inverted gamma parameter estimates 2 and i\, caleu-
lated by Formulas 4.2.2.1.3 apd 4.2.2.1.9, respectively. The last 4 columns
in the table pertain to the X goodness-oﬁ-fit tests as described in Sections
§.2.3.1 and 4.2.3.2. Tge number, ¢, of X cells selecved 1segiven, along with
the computed value of X, and a desigaation of whether the X~ test pmrsses or

fails (with c-3 degrees of freedom) at both significance levels p = .99 and
P = .90.

-

. From Table 4.3.2.1, one can see that at the .99 significance level, the
A test i8 passed in 7 out of O cases. Since each case 18 for a different
type of equipment, these results indicate a general applicability of the
invertcd gamma prior Jdistribution ¢n v for a large range of equipment types.
Fisures 4.3.2.1 through 4.3.2.14 give the empirical and theoretical marginal
distributions and the theoreticsl inverted gamma prior distributions whizh
have been fitted.

In Section 10, there i3 a 1ist of the computer program used to calculate

A ‘

a, Q, and X2 from the rield data. Included is a ligt of the raw dats for
each of the 8 cases, indicating the grouping into X2 cells. A listing of the
ocutout of the program is also included. '

An attempt vas made to fit a set of field data to a Weibull prior 4is-
tribution: ’
\ 8.1 -9/%
g(e)= g- 6 e 8/ . (4.3.2.1)

A
Rata Set No. &, with estimated inverted gamms prior parametexrs a = 3609.6 and

A ow 2,605, vas selected. Weibull parameters wvere selected to yleld the
sane mean and variance as the above inverted gasma distribution. The esti-
mates of the Weibull scale and shape parameters are then, respectively,

29
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o
& = 385.65, 8 = .7656. 1In Table 4.3.2.2, the X© cells for Data Set No. b are
shown, giving for each cell the observed end the expected number of obLserve-
tions under both the inverted gamme hypothesis and the Weibull hypothesis.

The expected values for the inverted gamma hypothesis are computed as
described in Section 4.2.3.2. For the Weibull case, however, the marginal
distribution is not available in closed form, s0 it had to be simulated.

For T = 4320, a = 385,65, and g » .7856, 10,000 random values of X (number of
failures in time T) were drawn in s two-stage process: first, a random 6 is
drawn from the Weibull prior, then a random number of failure times in T giver
¢ 18 drawvn. The reistive frequencies in 10,000 trials of the events

{X=0, X=1, ...} are used to appraximate the marginal distribution £(x).

The calculated velues of x2 are 1.315 and 16.482 for the inverted gauma
hypothesis and the Wuibull hypothesis, respectively. Since in each case two
unknown parameters are estimeted, both X~ tests are taken with 4-1-2 = )
degree of freedom. For the inverted gamma case, the 2 test is passed at
significance level p = .90, and even with p as lov as it is pamnsed after .70.
The Weitull hypothesis, however, fails the X2 test even at level P= .9999.
(Note that p is the probability of acceptance when the hypothesic 1is true,
and thus it is easier to pass a X2 test when p is high). Sinve %he hypothe-
sized Weibull prior fails the X2 test so decisively, this result significantly
helps to validate the assumption of an inverted garsm prior.

In this study no type 2a data was uncovered although by a designed test
such data certainly could be gathered. Much of the date gaitbered in this
study vas of type 2t; in fact, seventeen (17) mets. Thus, the mixed marginal
distribution model rad to be applied. This model was discussed in Subsection
4.2.3.4. In order to apply the X© test for type 2b it is necessary to have
the pumber of cells in the X2 test, c, such that ¢ & t+h. In rove of the
seventeen (17) data sets was the sanple size n large encugi. 80 that at least
t+l cells were avaiiable. This is not as severe s limitatio: ag it first
might appear. The pumber of identical equirments n should be us large as
possible for good fits and if n Is relstively large vith respect tu the number
of distinct K's, {.e., ¢t the mixed model can be applied.

4.3.3 PEMARKS ON T FITTED PRICR DISTRIRUTIONS

Data sets 1, 2, 4, 5, 6, 7, 3 have been shovn to be vell described by
an inverted gamma prior distritution. These seven data sets lepresent seven
different types of equipment. The question arises as to the degree of appli-
cabllity of these recults to other similar equipments. Por exanple, Data set
4 represented an oscilloscom~, There are mny different types of oscilloscopes
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by varisus manufacturers and one may ask: would these oscilloscupsas have

the same prior distribution as that of Data set 4? (und herce, the same
estimated prior Alsiribution as we Mave achieved could t=» used). The answer
is suyrictly speaking, no. However, his is probably speaking too strictly
for prectical purnoses. It is ver iikely that equipments similur to those
used in this report will nave prior distributions of the same fomily (i.e.,
inverted gamma) and hence, one need only estimate tie parameters and not 3o
through the sometimes tedious process of fitting the prior distribution itself
it my also turn out that even if the prior distributions do differ, they pay
be combined into one. This is actually not recommended because the combins-~
ticn of two inverted gamme distributions in this way leads to 4 mixed distri-
bution which i1z ot inverted gamms. Ctesrly, there are two lmportant srees
for future study

1) The upplicatility of fitted prior distribut ons wo
simil~r equi™ments.

ii) The fessibility of combining equipme:ats into one
prior distribucion.
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SECTIMN 5.0 REQUIREMENTS FOR SUITABLE A PRIORI DATA

- UMMARY

Obgective

The objective of this section is to develop requirements, qualitative
and quantitative, on the type and amount of data suitable for fitting a
prior distribution to o = MIEF.

Results

Regarding type of data, it was found that virtuslly all types of failure
data are suitable if there is enough of it. Even observations on prohability
of survival can be used. The "preferred" types are the aforementioned type 1
and type 2a but type Zb can also be used. The results for the amount of data
are summarized below. :

Type 1 - number of failures in fixed time T.

n & 30, T large enocugh to obtain variation in the number of
failures observed on each equipment. For example, T large enough
50 that the number of failures are not all the same for all n equipments.

A
Type 2a - observed MIBF, ¢, K identical for all n equipments.

n>20, K> 10.

A
Type 2b - observed MIBF, b, K not the same for all equipaents.

The number of identical equipmenis n should be large enough so

that n 2 5t + 20 vhere t i{s the number of distinct Ki's.
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Along with the development of methods of fitting prior distributions,
an important goal of this study is to establish minimsl dava requirements

for using these methods. There are two aspects of the suitability of data to
be consldered:

i) The type of data.

i1) The amount of data.

5.1 THE TYFE OF DATA

Failure data can occur in several forme. We divide these into two
classes: attributes and variables data. The attributes situation occurs
when an equipment is operated and its survival or nonsurvival for time T
(usually mission time) is observed. Then ususlly the binomial distribution

describes such observations and the parameter probability of survival In the
binomigl distribution is the reliability function

R(T) = ¢7/® 1 fixed. (5.1.1)

Now, since the MIBF = g is being considered a .aadom variatle in this study,
then so is R(T) and either Rolph's method or the K-R method (See Section 4.1)
can be used to fit a prior distribution to R. The chenge of variable & --I‘&F
then leads to a prior distribution cn . For thav matter, since the posterior
distribution is eventually of interest tue posterior distribution of ¢ can be
obtained by using the above change of variable in the posterior distribution
of R. Another attributes situation srises when test time T is fixed and the
equipment is irmediately repeired when e failure occurs. Then (because of
the exponential assumption) the number of failures occurring in time T 1is
Poisson and the K-R or Tucker method may be used to fit g(e).

The variebles data situation occurs when the actual fallure times are
availlable. These times occur either by agreeing to stop testing after either
a fixed number of failures have occurred or after e fixed time has elapsed.
The former case is called a censored test and the latter is called a trun-
cated ngt. Often the failure times themselves are not aveilable but the
pair (6 = observed MTEF, K = number of failures) is available. It really
doesn't matter for all members of the class of sufficient statistics for @
(to which @ and the failure times belong) result in the same posterior dis-

tribution for 9. Under the exponential assumption the distribution of § is
gamma and the X-R method can be used.

Thus, virtually all forms of failure data cen be used to fit prior dis-
tributions. However, in this study, only the following two types of variables

kg




data were found to be of pracsilical intercst:

Type 1 -~ the observed data is X, tne number of failu: s
in a fived time T.

N
Type 2 - the observed data is v, the sample mean.
i Both Type 1 and Type 2 data were used in this study, with .1e methods
: of fitting pricrs and the results given in Section 4 of this rc .>rt. The

discussion of quantitative date reguirements in the rext section is re-
stri~ted to just these two types of data.

5.2 THE EMOUNT OF DATA

In order to establish qQuantitative requirements for fittir: a prior
i distribution, the following information is necessary:

| 1) The type of data used.
2) The method used to fit the prior distribution.

3) The criteria established tc define "suitable" results for each
method and type of data.

*; Because of the dependence of the data requiremeats cn the above, each of
3 the cases of Section 4 must be analyzed separately. For each case (i.e.,
method and data type), a sensitivity analysis will be carried out, and date
requiremente will be set by applying suitabillity criteria to the results or
the analysis.

5.2.1 THE AMOUNT OF DATA-FAMILY UNSPECI¥IED

The only method used in this study for fitting the prior ¢istribution
when the family is unspecified is the Krutchkoff-Rutherford metiwcd. The
K-R methcd was used on field deta in this study, and the results are sum-
merized in Section 4.3.1. The purpose of this section is to derive suitable
quantitative data requirements for applying the K-R method.

The type cf data necessary for using the K-R method is obrervations
(6,,K,) on n units. Since the data is .f Type 2, it is necessary to set
mi%im&l quantitative requirements for the following:

A
1) the unit sample size, n.
2) the number of failures, {Ki], i=l, ..., n.

For the purpose of determining tiese dita requirements, ti:: following
computer similation was carried cut:
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« prior distribucion (v, was assumed L0 be inverted gamma with param-
eLers g = 150U, A = 5. From Decuion 9.1, it car be seen that the condition
A > & guarantecs that the first four moments of g{v) =re finite. Forty-twc
peirs ‘n,K) were selected, by combining & values of n (n = 10,20,30,5%,100,
200) with each of 7 vaeluej of K(K = 5,10,20,30,50,100,200). For each (n,K)
pair, n random values of u, each vased un £ failures, were drawn. (The
method of drewing the random é's is explained explicity in the next section.)
Taen wvith the n &'s, the first four mcuents of g(t) were estimaied as ex-
pleined in Section 4.3.1, and the K-3 method was applied. Tae criterion for
“suitable” data was (roughly) that an (n,K) combination is suitable if the
corrcsponding simulated date leads to a Pearson curve reasonably 'close" to
the original inverted gurma prior distribution g{g). One would expect the
estimated prior distribution to become "closer" to the true prior as both n
and X increase.

However, the result of the simulation was that, in 2ll LZ cases, the
K-R method was not even usable. In all cases, the estimate of the fourtn
central moment wvas negative, thus making the K-R method impossible to use
(for in all distributions, central moments of even order are positive).

Cince the b2 cases ure well representative of the practical range of
available data, and the specific inverted garma prior selected is very
"typical," the results lead tou the following conclusion: Ko data require-
nents can be set for the X-R method, since the method generally fails for
practical ranges of data.

(=S TS ~M1m. SAAONI TR AT TNA A FRARLTT AP AT e
PP P VN "1 L FU Y S U T X VST S PR PR W\ s JY

In this study, wwo cases of Jitting a prior with the family specified
were considered:

A
1) 1Inverted gamma prior, ovbservei random variable is 6. In this case,
minimu. data requirements m:st be set for (1) the sample size, n,
and (i1, che number of failures Kyjs 1=1, «oo, n

2) Inverted gamma prior, cbserved random variable is X, the number of
failures in time T. In this case, a minimum data requirement must
be set only for the sample size n. (The number of failures in
this case is the random variable, not a parameter that can be con-
trolled in n tes:.)

A
9.2.2.1 DATA REQUIREMENTS WHEN THE OBSERVED STATISTIC IS v

The gseneral frameWork is that there is an inverted gamma prior g(¢)on
the mean ¢ of an exponential time-to-failure distribution. Suppose that for
each of n equipments, K fallure times,are observed and a e is computed. One
then Tite g?e) using the n values of §. (This is the Type 28 deta discussed
in Section 4.) To test the sersitivity of the fit, one car try fitting the
sample data to alternste priors, and can repeat the test for different sets
of \n,K). If g{6) is the true prior distribution, then intuftively, as n
ané K are increased, the test should accept gle) as the prior, and reject
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the alternate distributions, with increasing frequency. 1In order to get
concrete results, i.e., specific values of n and K for which discriminstion
between the true and alternate priors is "good,” it was necessary to conduct
simulations for specific cases.

The simuletion program reads in the parameters « and \ of g(6), along
with the perameters of the alternate distributions which were selected to be
the Welbull and lognormal distributions with the same mean and variance as
the inverted gamma. The program &lso reads in the desired values of n and K
(n = 10,20,30,50,100,200; K = 10,20,30,40). For each of the 24 peirs (n,K),
the following steps are carried out:

1) Draw n random observations from g(e).

from

2) For each of the n 9's, draw K random failure times Xys veey Xy

f(x|g) and compute

f= ﬁf x, /K.

i=1

3) Using the n @'s, perform X? tests to accept or reject each of the
gdidate priors, at both the .90 and .95 confidence levels

(o X~ tests in all).

The whole experiment is repeated 40O times, and the final ocutput is a table
that for each n and each K, nrints out the number of the 400 that resulted in
acceptance, for each of the 6 X° tests.

In order to take the simulated xe tests, it was necessary to compute the
percentage points of the marginal distributions corresponding to the inverted
gamma, lognormal, and Weibull prior distributions. Since all three marginals
are analytically intractable, an auxiliary simulation was written to do the
following:

1) 10,000 random samples are drawn from g(6).

2) From each of these, h random faeilure times from an exponential
with mean 6 are drawn, and a § is computed.

3) The 10,000 §'s are ordered.

L) The looth, 200th, ..., 9900th §'s are printed out in a deck to be
used in the main program as an approximate "look-up" table ot the
99 percentage points of rK(o).

The X? tests are carried out in the main program as follows:

1) When the n's are read into the Pgogram, corresponding C 's,

dencting the desired number of X cells, and cerreaponding .90
and .95 level X2 values (C_-1 degrees of freedom), are also read in.
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2) TFor a given {n,K), class marks are selected from the kook-up
table sc that the expected number of observations of e in each
cell 1s n/"n under the hypothesis that the marginal distribution

fK(@) i5 the one corresponding to the inverted gamma prior g(¢).
3) Using the look-up tables corresponding to the K¥B.crder marginals
when the prior is Welbull and lognormal, the expeccved number of

observations in each cell under the Welbull and lognormel hypotheses
are found.

4) The number of values of 9 falling into each of the cells are

tallied and
o @ (05
X = ——
#HoOE
is computed for all 3 cases, where 0 is the observed number
of 9 's in the iR cell, and E, the expect*d number under

a given hypothesig. In each case, K is compared to both

the .90 and .95 X values, ané the hypothesis is rejected
if X2 is too large.

For one of the 400 iterations of the program, a complete ocutput of the
A tests was printed out for each of the 24 (n,K) combinations. Table
5.2.2.1.1 shows the output for the case n = 100, h = 40. (The inverted
camma parameters are g = 1500, A = 4). Note that in this particular case
the X2 test is passed at both ievels under the hypotheses that the prior
is inverted gamma or lognomedl, and is failed at both levels under the
Weibull hypothesis.

Due to the fact that the similation of the percentage points of the
marginal distributions f (e) requires & large amount of computer time, the

study wag restricted to one inverted gamme prior wilh parameters o = 1500,
A = 4. The alternate distributions considzred were the lognorm.l with
parameters | = 500, o = 353.55, and the Weibull with parameters o = £6M.7,
R = 1.4355. All three distributions have the same mean and standard devia-
tion, rameliy, i = 500, 0 = 353.55. Plots of the three density functions
ere shown in Fipure 5.2.2.1.2.

The output of the simulation is shown in Tables 5.2.2.1.3.a and
5.2.2.1.3.b. For each pair (n,K), %00 simulations were run, taking 2 X
tests (.90 and .95 level) for each of the above 3 priors. The number of
tests passed out of 40O are given for the .90 level tests in Table
5.2.2.1.3.a and for the .95 level tests in Table 5.2.2.1.3.b.

Referring to the above tables, the following rationale for selecting
suitable (n,K) pnirs is given:
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TABLE 5.2.2.1.1 EXPECTED AND OBSERVED VALUES FOR X2 TESTS
UNDER TACH OF 3 HYPCTHESIZED PRICRS

n = 100
K= 40
Expected No, | Expected No, | Expected NG
Cell No, ; Upper Class Observ: for Inverted for log for Weibull
Mark Zor Cell | No. of 's |Gamoa Prior | Normal Pricr Prior
1 215,91 15 10 17,634 23.686
2 260,69 4 10 8,488 6.150
: 3 304, &l 10 10 7.791 6,169
4 354,52 16 10 8.163 5.985
5 404,79 9 10 7.691 6,147
» 6 469,57 10 10 9.145 (N
! 7 553,02 12 10 8.80% 8,065
i a 669. 81 7 10 9.425 9.346
i .
l 9 884,06 7 10 20,395 12,427
T 10 1¢ B e 12,465 14,581
v? VALUES
__ : )
Inverted Ceacma Log Normal Weibull
Ccmputed X 12,00G Lo, 598 331,592
J9C luvel ' 14,684 ST 14,684
95 level 16.919 16.919 16,919




IT N X? tests are run at significance level p, then the distritution
of the number of tests pessed, under the null hypothesis H, that the suumples

come from the distributior being fitted, is binomial with mean u = Np and
variance ¢~ = Np{l-p).

In case a, N = 400, p = .90, so that u = 360, 02 = 36.
. 2
In case b, N = 400, p = .95, so that u = 380, ¢~ = 1G.

In each case, letting the random variable X be the number of tests passed,
the distribution of (X-u)/o is approximately distributed N(0,1l){unit normal).

If we solve the equations

X -

X
5 == -106)4'

b ¥
-0
S = -1.28 and S

for x.9o and x'95, then

Pr(x 2 x.%lﬁo) = .90 and Pr(x 2 x.95I HO) = ,95,

Referring to Tables 5.2.2.1.3.a and 5.2.2.1.3.1b, the following criterion
seems reasonable: “Suitable" pairs (n,K) for fitting the prior are those
for which the numtar of "passes" exceed x {or x 95) for the test of the

inverted gamme prior (the true prior) and are less than x % (or x 95) for

the tests of the lognormal and Weibull priors (the false hypotheses). The
computed vslues »Hf x 9 and x 95 (rounded to the nearest integer) are:

X X

.95
350

¥ 18

Case a (.90 level) 3

Case b (.95 level) 374 373

Looking at Table 5.2.2.1.3.a, one can note the following:

1) Excluding the case where n = 10 (all K), and the two cases
ns= 20, K= 5and n= 20, K = 10, the number of passes
foer the lognormal and Weibull tests .s always less than
brth <. 90 and X g5 (352 and 350), whereas, for the in-

\erted gamma test, only 4 cases pass less than 352 times,
=nd only 1 less than 350 times.

2) For each fixed K, the number of times the lognormal and
Welbull tests pess monotonically decreases as n increases
(with one exception). The same holds true (with 2 exceptions)
for fixed n # 10 and increasing K.




: .‘ TABLE 5.2,2,1.3.a. NUMEER OF X° TESTS PASSED (OUT OF 400) ¥
- | UNDER EACH OF 3 HYPOTHESIZED FRIORS, TAKEN AT ,90 LEVEL g
g . N 10 20 | 30 50 | 100 | 200 ‘:
i 3
g ‘ Inverted Gamma 357 375 364 351 367 360
5 ; ! 1
t ! 5 | Lognormsl 357 | 359 | 3u2 31 | 308 | 28 j
! ¢ :
, ‘ Weibull 357 | 320 | 72 175 . L ;
|
: ' Inverted Gamma' 364 365 364 345 357 351 b
] x
< 10 | Lognormal 364 351 347 302 251 210 I
i , Weibull 3k | 299 | 233 131 31 0
;
4 , Inverted Gamma 356 359 365 358 359 359
4 !
3 " | 20 | Lognormal 356 | 330 | 319 13 | 29 | 158 é
3 : 3
E ) Weibull 356 251 | 172 86 9 0
| ;)
| Inverted Gamma | 356 | 367 | 359 365 367
3 " 40 | Lognormal 356 18 | 298 261 189
. Weibull 356 2y 161 15 7
i
| L
;
! ;
4 Pl




An investigation of Table 5.2.2.1.3.b ylelds essentially the same re-
sults as above.

As can be seen in the tables, the discrimination between the true and
alternate priors increases rather dramstically as n and K increase. It can
be seen why the Weibull distribution fares “worse' than the lognormal by
looking at the plot of the three densities (Figure 5.2.2.1.2). Obviously,
the less the alternate prior "looks like" the true prior, the better the
discrimination bLetween the two.

On the basis of the above results, the following conservative data
requirements are set for fitting an inverted gemms prior when the observed

statistic is 6: n> 20 and K > 10. We must keep in mind, of course, that

the requirements are based on experience with one particular prior (inverted
gamma with @ = 1500, A = 4) and two particular alternate priors. It would

be of interest to repeat the similation for other cases. It is felt, however,
that the case considered is fairly representative and that the results ob-
tained from it are generally spplicable.

The only "problem" with the analysis described gbove is that it is
limited to cases where K is fixed in each sample of &'s {Type 22 data).
When the simlations were first undertaken, it was thought tpat if a peir

(n,K) was suitable for a prior fit, then data of the form{(é\i,xi), i=1, ...,n,

all K, = K} would also be suitable. This is not the case, ncwever, since
when %he K, 's are different (Type 2b data), one must use the mixed popuiation
model for the marginal distribution. As explained in Section k.3.2, this
leads, in actual practice, to a problem concerning the degrees of freedom
for the X° test, due to n being too small and/or having too mich "variety"

in the K,'s. In the above simulation, this problem was avoided by having
K's for %ach sample. The basic quantitative data requirement when the K,'s

are different is that derived in Section 4.3.2: ¢ 2 t + 4, where ¢ is the®
number of x? cells, and t is the number of distinct Ki's. Since we require
n

>

2 ¢, we can rewrite the requirement as t + 4 s %.

This requirement was not achieved in this report as can be seen in
Section k.3.2. Two remarks are in order. First, no matter how many distinct
Ki's there are (even if t=n) if the K, are all large, i.e., greater than '
or equal to 20, then the prior distribution can be fitted directly to the
observed é's. Secondly, when n is relstively large with respect to t the
mixed model can be ritted. There will be cases for large n when t is rela-
tively small. :

5.2.2.2 DATA REQUIREMENTS WHEN THE OBSERVED STATISTIC IS THE NUMEER OF
FAIZURES IN TIME T

Sections 4.2.2.1 and 4.2.3.2 discuss the method, and Section 4.3.2 the
results, of fitting an inverted gamma prior distribution when the observed
statistic is the number of failures X in a fixed time T. The purpose of
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: , .
TABLE 5.2.2.1,3.b. NUMBER OF X~ TESTS PASSED (OUT OF 400)
UNDER EACH OF 3 HYPOTHESIZED PRIORS, TAKEN AT .95 LEVEL.
AN 10 20 30 50 100 200
Inverted Gamma | 354 390 | 382 379 381 376
5 | Lognormal 6 | 3 | 3w w3 | e | 299
Weibull 39 | 349 | 318 233 12 22
4
Inverted Gamma 393 385 381 381 376 m
10 | lognormal 381 373 372 343 306 259
Weibull 393 335 | 286 186 53 1
Inverted Gamma | 392 ar9 | 380 378 382 379
20 | Lognormal 377 364 357 343 290 203
Weibull 392 286 | 229 127 17 0
Inverted Gamma 388 380 376 383 387 364
40 | Lognormal 388 360 338 320 250 130
Weibull 376 28, | 217 114 17 0
u
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T

thisg section is to find the minimum unit sample size n required to get a
"suiteble" prior fit. The analysis to determine the minimum n was based on
the senzitivity study described below, which ie analogous to the one de~
scribed in the previous section. The restriction on T is that it be large
enough 80 that the mumber of failuves is variable enough to take the X2 test.
The inverted gemma prior parameters selected for the simulation were
a= 4000, A = 3. As in Section 5.2.2.1, two alternate priors vere selected
baving the same mean snd variance as the above prior: a Weibull distribution
with paremeters ¢ = 2000, 8 = 1 and a lognormel distribution with parameters
W= 2000, o= 2000. The fixed time T was chosen to be T = 4OOO hours. Six
velues for the sample size n were studied: n = 10,20,30,50,100,200. For
eech n, n rendom values of X, {x,, ..., X j vere drawn, and %2 tests taken

against the (true) inverted gamma prior and the alternate hypothesized

priors. Each random value of X was drawn by teking a random value of 6

from the inverted gamme prior g(@), and then taking random failure times

t’l’ta" ... from the exponential distribution with mean 6. The value of X
K

is then taken to be the largest value of K for which ) &, < T
=1

Table 5.2.2.2.1 shows the results of one run of the simulation for
the cuse n = 20Q0. The first column of the upper table liste the value, x,
that the random variable X can take on, and the second column gives the ob-
served pumber of times (out of 200) that the events X=x occurred. The
last 3 columns give the expected number of times (out of 200) of the occur-
rence of the events X=x under the three hypothesized prior distributions.
These expectations are easy to compute for the case of the inverted gamma
prior, since the marginal distribution of X can be computed explicitly by
Pormula 4.2.2.1.2. For the lognormal and Weibull cases, however, the mar-
ginal distributions had to be approximated by simulation. 1In both cases,
10,000 random values of X were drawn (by taking random ¢'s from g(©) and
obtaining & random value of X as described in the previous peragraph). Then
the relative frequencies (out of 10,000) of the events X = 0,1,2,..., were
used to approximate the marginal f£(x).

In the lover table of Table 5.2.2.2.1, the results of the X° tests are
given. BSix degrees of freedom were used because the data in the upper table
vas divided into 7 %2 ceils. For this particular case, the inverted gamms
prior passes the %2 test at both the .90 and .95 level, while the other two
hypothesized priors fail both tests.

As in Section 5.2.2.1, the above simulation vas repeated 400 times for
esch n. Table 5.2.2.2.2 gives the number of times out of 40O that each test
vas pessed. The criterion for "suitable" velues of n is the same as in
Section 5.2.2.1, leading to the same critical values x.g) and x.95 as given

in that section. As can be seen in the table, when n is z 30, the number
of times the inverted gnsmma prior passes the test exceeds the critical
value 350(373) at the .90(.95) level, vhereas, the number of passes for the
lognormal and Weibull priors fall short of the critical value.

€0

¥
¥
H
5
:




Hence, in the case of fitting a prior specified ats inverted gamma wvhen
the observed date i1s the number of failures in time T, the following conser-
vative data requirement is set: the semple size n must be at least 30).
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TABLE 5.2.2.2.1 EXPECTED AND OBSERVED VALUES FOR X2 TESTS
UNDER FACH OF 3 HYPOTHESIZED PRIORS (n=200)

A n = 200
i Expected No, Expected No, Expected No.
} Value x QObserved No, for Inverted | for Log Normal | for Weibull
] of X of times X = x Gamua Prior Prior Prior
: ; 0 33 25.00 25,16 28,76
| 1 43 37.50 35.06 34.20
2 41 37.50 32,08 26,80
3 29 31,25 24.92 20,68
L i3 23.44 19,60 1.52
> 16 16.41 15.80 10.20
6 8 10.94 11.34 7.70
7 1 7.03 8.2, 7.12
Over 7 6 10.94 22,06 44,62
£ WALES
Lognormal Weibull
b4y 196 20,034
10,645 10,645
12,592 12,592

O

s |




TABLE 5.2.2.2.2 NUMBER OF )XC TESTS (OUT OF 400)
UNDER EACH OF 3 HYPOTHESIZED PRIORS

) o ]
X" Level \[ 10 | 20 | 30 { 50 {100 | 200
.90 Inverted Gamma | 352 | 342 | 353 | 355 | 353 | 367
Level Icgnormal 352 | 332 | 328 ; 260 | 183 57
Weitull 373 | 332 | 263 Lb n 0
95 Inverted Gemus | 390 | 380 | 383 | 373 | 376 | 387
Level Lognormsl 373 | 36k | 352 | 307 | 228 8
Wedbull 3713 | 364 | 304 80 | 16 0
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SECTION 6.C ANALYSIS FOR DATA COMBINATION

e e et Y AN, Sty IO O

‘ In fitting prior distributions in this study different classes of

| ‘ identical equipments were available. In fact, seventeen data sets were

‘ used. It turns out that some care must be exercised in defining what is

15 meant by a prior distribution on MTEF, say g(8). All p.d.f.'s must exhibit
| some form of homogeneity. That is, limitations are placed on the "reasons"
why the variable of interest varies. These reassons are commonly called
essignable causes of variation. As & beginning, g(6) has been restricted
g8 follrres

The random MI'BF's (6's) belonging to a particular g(e)
st be €'s on a given type equipment built to the same
design specifications by a particular manufacturer.

This 1s somewhat restrictive because it apparently places equipment

of the same design but built by different manufacturers in different g(9)'s.
It also places similar equirment, say computers, but witn different designs,
e.g., different memory size, in different g(6)'s. One might ask, couldn't
some of this data, say dirferent commuter types, be combined into one
prior distribution? Th2 answer is yes, but with this qualification: every
asgignable cause of variation, e.g., different manufacturers, is a piece of
prior information and, if possible, rhould be exploited. Combining data
F into one prior which have assignable and identifiable causes for having
4 different MI'BF’s, in general, increases the variation in the prior distribu-

: tion. On the other hand, fitting a large number of urior distribuiions is

H a costly process and it is wortbwhile to be able to "relate” prior distribu-
i tions on similar equipments even though they, the prior distributions, are

' not combined. For exauple, two computers of similar design, say different
memory sizes, might have prior distributions which are relatable, though it
might not be wise to combine them. Thus, when the pricr distribution of
the one is fitted, the priar distribution of the other is known. For

. example, let these computers be called c,, ¢, with prior distritutions _gl(e)

and g,(6). It might turn out that gl(O) and g,(6) belong to the same family,

®.8., inverted gamma, aud bence may Le related by same traneformation. If
this transformation is known tben baving fitted gl(e)(ge(b)), gz(v)(sl(e)) is

known. In Section 3.3 of the Appendix, a particulsrly simple transformstion
wvas considered, namely, :

6, = Ko K>0.

1
Then, 1if 9, 1s inverted gamms with parameters ('al-, )\l) ) ¥ is inverted gamme

vith parameters (a2 = oK, ka - kl). Thus, knowing (al, kl) and tke constant
K, the parameters of thg seond prior distribution are known.
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One particularly good idea for estimating K, which could not be verified

because of lack of data on two similar equipments, is that K might be well
represented by

K= bPa /xapl

where 6, is vhe predicted MTBF on the ith equivment. This idea should be
i E—

investigated in the next study phase.

iy, .




SECTION 7.0 ROBUSTNESS ANALYSIS

I SUMMARY

Oerctive

; The objective of this section was to investigate the effects of errors
1 in estimating the scale and shape parameters of inverted gamma prior distri-
bution on the posterior inverted gamme distribution. The effects were
measured in terms of chenges in the mean,5th, 10th, 90 and 95th percentiles
of the posterior inverted gamme distribution. For measuring effects of
errors in estimating the scale parameter a, a shape parameter \=3 was
assimed. For measuring effects of errors n estimating the shape parameter
scale parameter am200 wus asmm’e\d. The posterior distribution depends on

0 and three values were chosen: =50, 100, 200. These choicer were reason-
able in terms of the value of a,A aswumed; K values chosen were 5,10,20,30.

RS T el e Ot ek

Resuits

The effect of errors in estimating the scale parameter of the prior
inverted gamma distribution were practically negligible on the selected
percentilex of the posterior inverted gamme distribution for all three
values of & and for K2 2. The effects were more noticesple for K=10 and
quite rronounced for K=5. This ties in with the results of Section 5.0
regarding data requirements although arrived at in a different way.

T AN A R e T e

b , The effects of exrrors in estimating the shape parameter A in the prior
o inverted gamma distribution were, as in the ebove case, practically negligi-

' ble on the selected percentiles for K 2 2. For K = 5,10 the effects vere

- quite progounced. This result agaln ties in with the results of Section 5.0.




It had originally been intended to select several Bayes reliabiiity
demonstraticn test methods and investigate their robustness with respect tc
errors in estimating the parameters and family of the prior distribution.
Hovever, only two methods (Bibliography #2, #59) are available at this time
and neither has yet gained anything near acceptance in the field of reliability
testing. For these reasons, it was decided to abandon this spproach and take
another tack which, hopefully, would be of mcre use to the reader.

The ultimate use of the prior distribution ie %o sunplement it with ob-
served datz so that a posterior distrioution may be calculated. In short,
Bayes reliability tests will use the posterior distzxituiion in one forr. or
another. 7Thus, it was decided to investigate the sensitivity of posterior
distribution to errors in estimating tne parameters of the prior inverted
gomma distvribution; there was not time to investigate differences in femilies.

1f (u, \) are the scale and shape parameters of a prior 1nver;§d SaEmE
distribution, then the posterior distribution has parameters (a + K&, A + K)
with x;een

E(u!e) = ngf—i\ (

Now, if (a,A) were estimated incurrectly as say, @' = @+ aqa, \' = A + 8\ then

7.1)

T ') = 3'*?{&‘,0*&*](6 .2
£'(8186) T~ AT (7.2)

and this yould be the posterior mean used. ,However, far large K both ’E(Gle)
and E'(vlv) approach the same limit, i.e., 6, and do not Aiffer by mich. The
percentiles of the posterior distribution are not availadle in closed form

but can easily be obtained by computer. Figures 7.1 through 7.12 present

the behaviar of the posterior inverted gaams distridbution (in terms of its
mean, 5th, 10th, 90tk and 95th percentiles) for a fixed value of A = 3 as a
function of the scele parameter a. The A = 3 wvas selected because it rerre-
sented a reasomable m@}\tude for the uhape parameter. Since the posteriar

distribtution depends on 8, three e‘a vere selected for esch K: 50, 100, 200.
Tae K's selected wece 5, 10, 20, 30. Figure 7.1 shovs that the mean aid
percentiles of the posterior distribution are rather insensitive to ¢ (i.e.,
the lines are almost vertical) for K = 3D, € = 2X). Mich the same is true
for all K = 30, i.e., for Figures 7.1, 7.2, 7.3. When K = 10 (Figures 7.7,
7.8, 7.9) the mean and percentiles become yuite sensitive to differences in u.
Yiote that the effects of §m in the translstion of the mean and percentiles
aiong the & axis and not in the slope of the lines. Thus, for A = 3 the
errors of estimating a ir.correctly dc not appear serious until K gets smsll.
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SOOI §

Comparing Figures 7.l through 7.12 with Figure 7.0 shows that though the
prior distribution is highly sensitive to differences in g (for A = 3) the
posterior distributions do not exhibit this ciaracteristic. The pcsterior
distributions are, of course, sensitive to differences in a + K& but

Ke is alwsys known and usually lsrge compared to u so that errors in esti-
mating o sye not too serious.

A gtudy similar to the previous discussion was done for the same

8 = 50, 100, 200, K = 5, 10, 20, 30 but this time ¢ = 200 was held fixed and
A varied. PFigure 7.13 shows the vrior distribution mean and percentiles.
Since the shape param:ter of the posterior distribution (Figures 7.14 through
7.25) is (A + K), it is no surprise that the sensitivity of the mean and per-
centiles to errors in A is greatcr for smaller K. For large K, (A + K) is
dominated by K for the values of A expected to occur im reliability. Put
another way, suppose A = 5 in the prior distribution but that an 0% error
vaa made and A' = 8 was estimated. For K = 30 then the true shape parametexr
in the posterior distribution would be (£ + 33) = 35 and the one estimated
wonld be (8 + 30) = 38 a relatively small perceatase error compared ©o the
orleipal error.
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SECTION 8.0 CONCLUSIONS AND RECOMMERDATIORS

8.1 CGONCLUSIONS

As a result of this study certain conciusions appesr lnescapeble. We
list the important ones now. First, fitting prior distritutions to 6 = MI'BF
is entirely feasible. The techniques developed in this report indicate that
the mechanics of the fitting is & relatively inexpenaive process. Secondly,
tke amount of dsta available, i.e., in existence today, which leads to good
vwrior distribution fits is somewhat limited. Thus, the costs of fitting
prio: distributions, while not exorbltant, will be primaxily incurred in
acquiring, either by intensive search oxr hy designed test, suitabie data.
Thirdly, the inverted gamme priocr distribution, which is mathematically
quite tractable, also appears to graduate data quite nicely since ian the
eight (8) situations where a f£it could be obtained, seven of them were
well described by an inverted gamma wrior distribution.

Ir summary, the development of Bayes reliability demonstration tests
appears to be quite feasible from the standpoint that the prior distribution
needed can be fitted.

8.2 RECOMMENDATIONS

The following rezcmmendations are intimately connected with the conclu-
sions of this report. First, it is recoumended that additionmal prior distri-
butions be fitted. That is, prior distributions should be fitted to equipment
different than the type studied in this report. This will further test the
suitabllity oI the Inverted gamma prior distribution. Secondly, in view of
the costs of fitting prior distribution, twe areas should be studied.

1) Bayes methods of reliability demonstration which do not require
a prior distribution should be studied. Such s method is
exmpirical Bayes. It js doubtful this area will) be entirely
fruitful but is certainly worth a look.

1i) Methods of relating prior distritutions on different, but
perhaps similar, equipments so that prior distributions may
ve derived from one another instead of fitting new wrior
distributions to each one. An example would be relating two
equipments by some fixed ratio of their predicted MIgF'a.
Finally, the receptiveness of Govermment and Industry to
Bayes Demonstration tests should be studied for even if
the methods are developed and feasible the Bayes rlans vwiil
not return much cn investmen: if they are not ured.

In summaxry then, it i3 recommended thet the next lcgical steps be taken
in the development of Bayes reliability demonsiration tests.
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SECTION 9.0 AFPENDIX

9.1 THE INVERTED GAMMA FRIOR DISTRIBUTION

At the time of this writing (late 1969) it seems impossible to exaggerate
the importance of the inverted gamma distribution in reliability estimation/
demonstration; particularly, when the measure of reliability is ¢ = MTEF.

The reasons for this importance follow.

First, the inverted gamms distribution is a two parameter distribution
(it can be made three parameter) and is very flexible. That is, the inverted
gama distribution can be used to graduate a wealth of empirical data. As
evidence of this, we offer the fact that seven of the eight data sets analyzed
resulted in geod inverted gamma fits.

Secondly, and, perbaps more importantly, the marginal distribution of
X (X being either time to failure or number of failures per fixed time T) is
also avallable in closed form. This mskes problems of fitting the prior
distribution much more tractable.

Finally, the inverted gamms distribution 1s the natural conjugate for the
Poisson process (i.e., for the exponential and Poisson conditional distribu-
tions). This means that the posterior distribution is of the same form as the
prior distribution (inverted gamma) and hence, the posterior distribution is
available in closed form. This makes computations for demonstration tests
and other analyses much more tractable.

Tbe gamms distributior in the random variable X is given by

A
8lx) = 7> L 2" oy, > 0. (9.1.1)%

The change of variable ¢ = 1/x lesds to
A
&(e) = F%'{T g-h1) -/ (9.1.2)

Thus, the gamms and inverted gamma are related by a reciprocal transfor-
mation. This is perticularly convenient since for the Polsson procese the
MIBF iz the reciprocal of the failure rate. Hence, a gamma prior distribution
on the failure rate implies an inverted gamma prior distribution on the MI'BF
and conversely.

- w3
T()\) is notation for the gamma functiom: TI(\) -f A1 eV gy.
o
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The characteristic function of the inveriel gamna 1s useless for finding
' the moments but they may be found directly. The K'D momeut is given by

£(e5) = [ o%z(e)ae
/

N [ -
" ! 0-031) ¢=0/0 4o (9.2.3)
The change of variable y = o/ leads to
E(e%) = oK [ KL vy (9-1.8)
()

For (A-K) > O the integral in {9.1.4) converges and because of the
recurrence [ (v)v = [(wl)

£(65) = _R_sf___. (9-1.5)

o {\-1)
{=l

For (A-K) < 0, i.e., A = K, the integral iz (9.1.4) is infinite and E(OK)
does not exist.

If {A] = the largest integer smaller than ) (e.g., [4.3] = &, [k.0] = 3)
then all moments up to and including [A] exist and no moments beyond [A]
exist. Using (9.1.5):

e o+ b e o0 < i P e ot

E(6) = _‘:I A>1
§ £(e)= _f \>2 | (9.1.6)

(A-1)(2-2) .

and 02 qg
0 -

(x-l)z(x-z)
EXAMPIE: Suppose, given an inverted gamma distribution vith g = 100 ) = 2.5.
Then (1] = 2 and only the first two momants exist. They are

E(6) = %9% - 66.7

£(6%)= 1_0;.?%0. = 13,333.3.

I JU




It is of no consequence to this study that the moments do not all exist.
Other than this the inverted gamma is well-.behaved and even if the mean does
not exist, the mode, median and all quantiles do. The mode is given by

- Mode = Xg'.[ . (9.1.7)
9.2 THE MARGINAL DISTRIRITIONS

In this section the marginal distributions (for an inverted gamma prior
distribution) will be derived for two conditional distributions.

i) Tbe Poisson distributiorn when pumber of failures occurring
in fixed time T is the observed random variable.

11) Tbe gamws distribution when the time to failure is expogential
and hence, the observed random variable is sample MI'RF 4.

For case' i) above

£(x) =! £(x1e) g(6) ae

o [ e Yoot | &t e | -
f[e x VAR b

(2]

- al ‘l‘x e-(T’a)/a .
) xTJ e a9,

With the change of variable Z » (T*a)/§

A .
- 5 m“ T - ]e"z 2L g

The integral teri is ['(Aex) so that

f(x) » L¥x) (T x( c)x (9.2.1)
riaix. (‘Fa) oo
9.

R T




T T

i

Setting p= @ ardq=_T_ it is noted that prq = 1 and
T4 a

£(x) -ii*:' P * x=0,1, cco. ,

is the well-known negative binomial distribution with

= a AT
Mean = E(x) N

Variance = oi " ’\T%g).

It should be noted that if we had started with a gamma distribution on
failure rate and a Poisson conditional with mean: failure rate times T
instead of T/6 the same negative binamial distribution as (9.2.1) would
have resulted.

In case ii) above, it is easy to show that if time to failure
exponential, then the conditional distribution of the sample MIEF, ¥,
- given the MIBF, &, is gamme, i.e.,

o (Q;e) - (g)x !'%‘ET e o

Here; :{ is tt‘e cbs&rveﬁ mumber of failures §nd ¢ is the true btut uninown
MTBF, Hence, the mrgissl distribution of

EYOR f £,(610) alo)an

- e ® A K.
- 2 AR BK*FI )
‘ < . ‘— . . ’:“ “ \...~ .\\
~ The change of variable Z = 3KV lesds to

L. (’é‘}‘- RYE0Y ( ) ( K3 ) ( )€> 0. (9.2.2)
'K “y .
; , m(ﬁ w w;;a :
which is the not 80 nu~knmm mvemd Beta. c&iatrihution.

Tn any event




E(a) = X%I A>1
E(ge)- 02 K+l A > 2.
K(A-1

9.3 TRAKSFORMATIONS ON THE INVERTED GAMMA DISTRIBUTION

In Section 6.0 (Data Combination) a certain method of reiating prior
distributions on "different” equipments was discussed. The idea depends
on a property of the inverted gamma distribution (many other distributions
bave this same property) which will be shown here:

Ir
\
se) = & g=(M1) -of6 (9.3.1)

i.e., if 6 is inverted gammm with scale parameter a and shape parameter A
then the random variable y = 8g, 0 <8 <o is again inverted gamma with
scale parameter (aB) snd shape perameter A. That is,

&(y) = IS“‘;%): y-(hl). e"ﬂB/Y (9.3.2)

This result follows by substituting 6 = Y in (9.3.1) and multiplying by
the Jifferential element do = dy/8. ]

A change of the form ¢ = * - ¢, 0 < ¢ <%, has the effect of introducing
a guarantee time 8c and changing the scale parameter to aS.

A change of the form 6 = y)‘ means that y is not of the inverted gamma

family.

9.4 IDENTIFIABILITY OF THE PRIOR DISTRIBUTION

The centrul problem in estimating the prior distribution of MBF, say
8(8), 1s that random samples (to construct an estimate of g(6}) are not
availabie from g(g). Thus, the margimal distribution

-] #ixloa(o)as 94 1)
: |

aust be used to estimate g(g). Suppose nov that the equatlon

100
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£(x) = ! £(x16) &, (6) a0 = ! £(x16) &, (8)a6 (9-4.2)

implies that gl(a) = ge(e). In this situation f(x) is called identifiable

with respect to £(x16). Identifiability is w« crucial property for this study,
since if (9.4.2) could hold and gl(e) # 52(8), then two different prior dis-

tributions could lead to the same marginal distribution and since the marginal
distribution 15 used to make inferences about g{6) it would be impossible to
tell which (in the case of non identifiability) g(6) obtalned.

We will show the identifiability of the marginal distriution £{x) vith
respect to three conditional densities (the Poisson, exponential, end gasmn).

-1/6 X
1) fx|g) = L{.g&)_ . This is the case where the number of Mihres

occurring in fixed time T is the observed random variable and the
operating process is the Poisson process.

11) f(x|e) = /e e /8, Here the random variable X is time to failure,
A

S

K .
111) r(?le) - { (zg (8)"1 e Y. This is the éamma distridbution of

sample MTBF when times tc failurc are exponential.

A result of Teicher (Reference 7) is used 0 show that £(x) is identifi-
sble w.r.t. 1) above, i.e., that different prior disti"ibutions cannot lead to
the sgme marginal distribution. The result is that & family of densities
which 15 additively closed (a.c.) is identifiable. Additively closed means

t(xla) * £(x]?) = r(xja + g) (9.%4.3)
The * denotes convolution.  Since it is easy to shcw that the sum of two
P.isson varistes 18 again a Poisson variate vith parameter the sum of the
tvo parameters f(x) is identifiable in case 1).

For case 1i), ve note that

£(x) -f J./ae”‘/eg(e)aa {9.4.h)
[}

) e
A R o B




Making the change of variable A= 1/6

£(x) = f xe ™M g(0)ax (9.4.5)
(o]

This, £(x) divided by A is the Laplace transform of g(x). If g(\) is a class
of continuous densities (e.g., the gamma family) then g(6)is a contimuous

class (e.g., inverted gammz) and by the uniqueness thecrem for Laplace
transforms f(x) is identifiabie.

Finally, for case iii) we again use a result of Teicher (Reference 7).
That is, for fixed K iii) is a scale parameter family generated by £{x(n,l)
and a uniqueness theorem for Fourier transforms gives the desired resulst.

9.5 LIMITING EEHAVIOR OF THE MARGINAL DENSITY fK(ia‘)

L.
When § is the sample MTEF based on g failures, then under the conditions
glvem below the marginal distribution fK( ) converges to the pricr distribu-

tion g(8) as K <o . This is shown in the result and proof 9.5.1 below.
Figure 9.5.1 shows a particular exsmple: the prior density g(6) is plotted
along with the corresponding inverted Beta marginal densities fK<6) for

K =1,2,3,4%,5,10,20,50. Clearly, when K is small, it is erroneous to fit
sample values of © directly to g(e). When K is large, however, (any K = 20),
the error is not too bad, and sample s based on large K's can be fitted
directly to g(6). Thus, when K is "large" enough, a fairly accurate method

exists for fitting the prior which avoids the problems involved in using a
mixed porulation model for the marginal distribution.

9.5.1 A RESULT AND PROOF

Consider a density g(8) defined on (0,“9 such that sup g(®) is finite,
and consider a sequence of R.V.'s LTK} with densities given by

-]
n(t) = fg(e)fx(tle)de, K= 1,2, ... waere the
o
sequence {fK] has the property that v fixed t_> O,

b

lim f fK(tIB)dt={

1 ife<to
O ife >t
(o]

102



LThe above condition is satirfied in the ususl Bayes st-up, vhere Ty 18 (3e7)
A

the mplemnex,baaedmawmphotmxﬁm(uy)mumm

digtritution with mean §. For hen E(QKIQ) = g, all K, and lim Va.r(SKQO) =0,

-0
from wvhich the above condition can easily be showm to hol:li(
Then we have the fcllowing

RESULT: The d.7. HK(TK) = P(‘I‘K < t) converges pointwise to the 4.f.
G(8) = P(& < t), i.e.,V fixed t, >0, such thet 1L Hx(to) = G(to).

K—~ov
ga;go_g: Fix “t.c. By definition,
b e
B (t ) = / je(e)rx(tle)de at

T o

© to v

= j s(e)f fK(tIG)dt 48, assuxing the appronriate

° o

measurebility conditions for Pubini's Theorem hola.

- Row set Qx(s) = g{8) f*b i’x(t 18) au, sc that ax(‘o’) -jQK(b)ds.
o o ‘

Since ¥ ¢ and X, Qx(e) 1s bounded above oy sup g, we apply Loe
dominated convergence theorem and get

xu«i Hx(ta_)_ - ‘1:' !“x“m"!ﬁﬁ“x“”“

- to :
- [1m e [ reiea) o
o]

o

%
-fg(e) [mf rx(tlﬂ)dmj 4%
Q

o
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SECTION 10.0 COMPUTER PROGRAMS DEVELOFED

10.1 DATA ARALYSIS PROGRAMS
10.1.1 "KR"

A
This program uses data in pairs consisting of Ie‘s and Ki“s 1o calculate

the moments for the K-R method discussed in Sectioos 4.1 and 4.3.1 of this
report. The program 1s designed such that if either the second or the fourth
moment is negative, it terminates and prints "method nct applicable.” If both

. I é‘ A A
of these moaments are positive, the sample R1:V¥8y, Bos and the estimated

inverted gamma perameters, Qand ﬁ\, are calculated. A list of the program
follovs.

PRy

‘s it




g y

R -

€

L3425

RaQ
ASE
660

FelXe Nnr,  P9/i5/89

READN ¥

PPINT“NATE TFT MO,.:"Y
PEINT

LET “:=e

LET =0

LET M:=p

LFT =9

REAR ¥

PRINT™ = ,"9TPF","W0, OF FRILUFES"
PPINT -erecracncecssncascvocenanone
FOR .z} TO ¥
FELD T,0
PRINT ), T,n

P LET "M=Mi+ T

LET M=M24(T12)2R/(Me 1)

LET MRcMR&(Te3)R(HE2) /¢ P+ 1IR(P4D))
LET MAzMAR(TL2)RCNIS) /( (N1 )= (NP ) (NS3))
VEXT O

PRINT c-ccccccnmcsnannroncncncrovcana®
PRINT

LET “i=m}/x

LET Ww=M2/K

LET R=myy

LFT ™MA=Masy

PRINT"MI=" M

PRINT"W:-" 1

PRINT" M =" %

PRIMT " Wa="w

LET W2 -M2-M1 92

LET VXzMX=ZaMixMP424(M] #})

LET VAzMA<AxMIME4Sa(M] 2D )wM2=X2(M] 4)
PRINY

PRINT"CAMPLF MOMENTE APOUT MEAN™
PRPINT

PRINT"CECOND="U2

PRINT™ HIRD="U3

PPINTT"FOURTM =" Vg

PRINT

IF W2<p THEM 220

IF VA<t THEN 428

0 TO 440

PRINT" ETHQOD NOT APPLICAPLF"

GO TO SX@

LET Plz(VR 2)/(v2ed)

LET CI:zP1«.5

LET B2:=Va/(\242)

PRINT"SAMPLE PETAI="Pi

PRINTCAMPLE €0 RPOCT OF PETAI="SI
PRINT"CAMPLFE RETAD:="P2

LET KizP 1n((P2+3) 2)

LET ¥2:4%(4sR2-24R] )#(2%RP=X2P ] -€)

* PRINTVSEMPLE WAPFa="¥|/¥?

PRINT
PRINT"cvcnevmenpacccsncsvansnns
PPINT

PRINT™ FRTIMATED INV GAMMA PARAMETERS™
PPINT

LET La(Qu"p=(M) +2))/(M2=(M112))

LFT AzMiaf)ef)

PRIMT"ALPHA="p

PRINTT 1LAMPRA="L

PRINT

PRINT® . zzseesssossyresszessosmzssssosons™
PRINT

G0 T0 )¢

(AU
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0.1.2 "BAYES"

A
This program first calculates 4 and\ using equations L.2.2.1.8 and
%.2.2.1.9. It then uwes these estimates to calculate each of the f(xi)'s

according to equation 4.2.2...2. The X2 cells gnd tke upper class limits
are read into t.nexgrogram and it computes the X¢ value by equation 4.2.3.1.1
and prints ocut a value to be compared according to the method described

in Section 4.2.3.1. TFollowing is a list of the program and the printed re-
sults used in this study.




e e e o et rone

T e o ew g W i SRR e MR

BAYES 8131  VED, 12/0%/6%

19 DIN Z(59) ,E(30)
20 PIM D(29),8028),M(29)
39 LET T:a32¢

4 READ A

S PRINT "DATA SET NO.°a
& PRINT

W LET 29:=8

® FOR I=) To ¢

% LET 2(1):0

190 WEXT 1

112 LET mp

128 LET S=¢

130 LET y=@

148 READ ¥ F

150 IF X=999 TMEW 240
168 IF ¥23 THEN |98
178 LET z0=F

i*e 60 TO 209

199 LET 2(¥)=F

200 LET ysyoF

210 LET MMexeF

220 LET S=S+(Ke2)eF
230 GO TO 149

240 LET MeM/y

250 LET S=8/y

260 LET V=S(M2)

270 LET azCM 1 /(V=M)
280 LET Lz(AsH)/T
299 PRINT "ALPHA="S
380 PRINT ™ LAMRDA="|
319 PRINT

320 LET P=T/(T+)

330 LET Q:A/(T+A)

342 LET E9=(QeL)

30 LET Ed=Eguy

360 FOR x:) TO Se
370 LET Fz(QeL)e(P)
389 LET Pz

390 LET P2:=)

A0 LET ViLex-1

410 FOR Iz To

420 LET PI=PleW

A30 LET PR:lsbe

440 LET Weve) .

456 NEXT 1

460 LET E(¥):Pep|/P2
AT® LET EOO:E(r)ey
ae9 NEXT y

" 499 PRINT

508 PRINT
S10 READ €}
320 PRINT “WO, OF CHI SQUART CELLS:"C)
830 PRINT
340 PRINT “CELL MUMRER™,"UPPER LINIT™
,” 'll.r '...Q-.‘--........I..--....-
568 FOR 1z} T0 C1-|
$79 READ D(D)
80 PRINT I,P(])

NEXT 1

60 PRINT C1
618 PRINT

620 LET 6C1>e20
€33 LET HC1)ele

R T

B T - T ihr *




 FEEERITE - £3-F 11

LET T
eyt

PRINT
PRINT

PRINT
PRINT

PRINT
PRINT

£32£5328333233¢280

1319 DATA
1012 DATA
1914 DATA
1016 DATA
1810 DATA
1820 PATA
1622 DATa
1024 DATA
1026 NATA
1028 DATA
1038 DTS
1032 DATA
1034 DATA
1636 DATA
{038 DATA
1048 DAY
1942 DATA
1944 PoTH
1848 DATA
1048 PATS
1858 NaTa
1852 DaTa
1694 NaTA
9999 WD

FOP =22 TO CI
LET ec1):=@
LET n(I):z0

NEXT 1

FOR J=1 TO (1)
LET R(1)=0(1)+2¢))
LEY HC1)2HO1)ECDH
©yr J

FOP 122 TO Cl-)
FOR JzDPeI-1)41 TO0 DM(D)
LET QR(I)=G(1)+2(
LET W(ZI=NCI)4E(D)
XY J

NEXT 1

LEY Si=0

LEY T1=0

FOR I=) TO Ci-}
LET Siz8146(D)
}:TI+N(!)

LET a(Ci)=y-2)

LET M(C1)2Y-T)

LET C2:¢8

* BCERVED®, “EXPECTED"

.-.....Q.--.-.“---. ..... .Q.

FOR i=1 70 C!

8C1) NCD

LET C2=CP+((RC1I-HCI)) ¢2) /HC])
WEXT 1

“CH] SQUARE:="C2

-0
R el S i




' 1
»
BavES £:37  VED,  10/88/69
MTA SET 0. )
LPNAZ 1279,67
LAREDAS ©,24991
M. OF CHI SQUART CELLS: 4
CELL WIMESR  PFER LINIT
2 3
3 7
A
®SEPVED EXPECTED
13 12,7267
12 9.95338
. 11.9728
' 7.24608
A1 SEUARE: 1.35756
MTA SET MO, 2
ALPHA: 758.381
LAMBDAZ 1.12716
%0, OF CKI SQUARE CELL3: ¢
ELL WMBER  WPPER LINIT
1 N
2 2
3 5
* p
s s y
H 12
1 i :
; ,
P SERVED BxPECTED
0" 17,0014 - -
" 1.52891
10 s.6T370
7 s 83914
«.a 255816
T 16,4338 \
s 287016
H ¢.0693%

M1 S9UARE: 6,8 76€51

TR LI I IR IR IS NSRRI EISLILCI222RRZS

[PEP




DATA SET NO, 3

ALPHA= 727,436
LAMBRDA: , 756319

W0, OF CHI SQUARE CELLS: 6
CELL MI'REP UPPER LIMIT

LI LY L LY DY LYY YRy LT EE LYy L]

| 1
2 2
3 3
A 4
5 ]
3

ORSERVED EYPECTEL
14 22,4572
12 §.63259
13 5,2156
6 4,19199
1 18,4516
7 19,0851

H1 SQUARE: 21,9927

-----------------------------------------------

DATA SET NO, 4

ALPHA= 3609,57
LAMBDAC 2 ,604%5

NO., OF CHI SOUMRE CELLS: &
CELL AUMBER UPPER LINMIT

LA A LT T I I Y YT YT TR Y Y

| 1

2 2

3 4

4
GBSERVED EYPECTEDR
18 15,881}
1 9.148351
12 13,4907
19 12,4797

O] SQUAPE: |,31484

R e ety G e




MYA SET NO, S

ALPHA= 7584,73
LAMBDA: 4.03817

N0, OF CHI SQUARE CELLS:= 4
CELL W'MBEP PPER LIMIT

1 1

2 2

3 4

4
GRSERVED EXPECTED
22 15.971¢
7 g.67211
5 10.3¢53
6 4,348

CHI SQUARE: 5.60218

----------------------------------------------

DATA SET MO, 6

ALPHA: 2231 ,.61
LAMBDAZ {,734]9

0. OF CH] SQUAPE CELLS: 3
CELL NUMBEP WPPER LINITY

EA LI TP RETI Y Y LY A Y Y L XY ]

i 1

2 4

3 4

4 §

b
@SEPVED EXPECTED
21 1e. 3683
L €, 79374
19 12.793¢
o 7.3348
7 7. 7951

] SQUARE: 1,.59224

sTezzeasgratesesroETEoSTEZETISECsEsIsTen SRR

iy alsabamt Y s




et i e

A

g TS Py 0

- £ gy e e
P St~

2o e et i ool s, e .

MTA SET WO, 7

ALP¥AZ 1767,.69
LAMRDA: ' ~7g862

W, OF CHI SQUARE CELLS: S
CELL wumBEgP UPPER LIMIT

! ]

2 3

3 7

4 18

5
RIEPVED EXYPECTED
1€ 13,2822
15 14,8425
11 12,7591
L 6,23432
6 4.881%6

O] SQUARE: 2 ,64293

b - X - el
e A L R T T LI T

PaTaA STT wO, &

ALPHA= 770,804
LAMBDA: 692096

W0, OF CHI SQUARE CELLS: 4
GELL mmeer UPPER LINIY

e T ol e i e g e st

‘.-.-....Q....-..'..‘.....

) i ;

2 3 fa
3 s s
A
@SERVED EXPECTED
16 21.4834

e 6.1172¢ :

s 12,3434 .
'] SQUARE: 7,67972

ITTyTRezICEIICEYSESITSSIITIEILI IS S IYIR IS o szt

us




10.2  siMuLATION

10.2.1 "mAYES 2"

This 1s the simulation described in Sectiom 5.2.2.1.
pProgram, as it was used, follows.

Cie form of the
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e B e WP <

5. B e

e

coclt
cccz
ocea
0004
0ucs
0cce
ocot
occe
GCl9
ccic
cetil
0012
cc13
0Cie
acls
0016
oc17?
0CtA

ccd
ceae

cc21
0c22

cc23
0Cc24

cc25
cCee6
0027
0cz2s
cc?a
ocyn
0031
cC32
ccyl
0C3e
0C35

€036

cca?

DIMENSICN NI6)oKi4) NCELLG)
DIMENSION IPF(6,4,2),THET(200)
OIMENSION GMARK{19),CS1(6),C52(6),01{200)
DIMENSICN 7PMARK({LI} 4 NGTALI20)EGI201,ENI20),E%120),ON(19),0KW(19)
DIMENSICN INPF(694el) s IWPFI644,2),1CCLUMIS)
DIMENSION 1(1(6),1C2(06).1C3(6) .
DIMENSICON XGAM{SI) o XWEIB(39) yXNRM({IT)
DIMENSICN YCAM(99,4) ,YWEIB(99,4) YNRM(97,4)
DIMENSICN IUPFL6,4,2),1C416)
DIMENSICN EUL20),0U(20)
IX=48828125

5 FORMAT(615)

7 FORMATLG1S)

IC FORMAT(415)

15 FORMAT(6F10,3)

2C FORMAT{LIOFB.5/10F8.5/10F8,.5/17FR.5/10F8.5)

25 FORMAT (F1C,2,110,4F10.5)

3C FORMAT (LIMHL/15H INVERTED GAMMA, 20X, 7TH ALPHA=,3X,F10.%,10X,6H LMDA=x
lobXell0 /7H LOGNRM2B8Xo4H MU=z OX¢FLl0.5,10Xe7H SIGMA=,3X,FL0.5/6H
CREIBLLL 422X ¢TH ALPHA= IN,FL15.5,13X,6H BETA=,F10.5//1)

35 FORMATI1I0Xy3H N=o14//10Xs3H K=414//)

4% FORMAT(///7/710H CELL NOo 410H CLASS o 10H CBSERVEC 4100 EXPECTED
lelCh EXPECTED,10H EXPECTED /10X,10H MARK » LOX, 1O INV GAMMA,
2100 LOG NCRFL,LIOKH weildlULL 7/}

SC FORMAT(ILO0sFIC.5,110,3F10,.5}

55 FORMAT(I10,L0X,110+s3F1045//7/720X914H CHI SQ VALUES//20X,10H [NV GA
IMMA, LOH LCG NCRML.10H WEIBULL /20H CCMPUTEC CHI SQUARE,3IF10.5/
220H 9C PERCENT LEVEL »IFIN,5/2CH 95 PERCENT LEVEL v 3F10.5)

6C FORMATI///7/73CH 4900000849884 00840888828880%//7///)

TC FORMAY (//7720%X425H SUFMMARY OF RESULTS AFTER,15,8H TRIALS/
120X425H LEVFL 1=,.70 LEVEL 2=.95/ 20X, TH ALPHA=,Fl10.5,5K,8H LA
2MBDA=,110//77)

75 FORMAT(20XeTH LEVEL=,[2/77/20X¢ 15K INVERTED GAMMA///)

17 FORMAT (LOH Nzo6110//710H K=/)

80 FORMAT (T7110/)

85 FORMAT(//7/2GXs11H LCG NCRMAL///7)

87 FORMAT(//7/720X,8H WEIBULLZZ/)

88 FORMAT (///20%48BH UNIFCRM// /)

9C FORMAT(// /20K, 10H x0eet0est/)/)

91 FORPAT {711C/78Xe2M4 Lo6110/8Xe2H Web110/78X%X92KH Us6110/7)

36 FORMAT (///20X412H ALL & TESTS///7)

97 FORPAT (15,F8.298XyFR,248XeF8.2)

99 FORMAT (34K TABIE CF SAMPLE PFRCENTAGE PCINTS/

1231 CF THE MARGINAL FOR X=,15//59%,16H INV GAMMA s 16K LOG N.rM
2AL +RH WEIBULL//)

142 FORPAT (10FR.2/1CFA.2/10F8,2/10FB.2/10FR.2/10F8.2/10F8.2/10FB8.2/
CIOFB,2/9F8,2)

REAC (5,5) (N(J),J=1,6)

116




- B RS ¢ SR 2 e e A R = ¢ R

!-?
. ¢
2
2~
0Cin REAL (547) INCFLEG)9d=145)
crnya REAC 15,1C) (KUJ),yd=1,e4)
ccan READ (5,15) (CSEUJ)edxlend
CC4l REAC {5,15) 1C52101rd=1,461
cra? 10C READ (5425) ALP,LAMJAMU,SIG,wAl PowBET
Cras IE(ALP,EQ.999.) uu TC 699
Craa CO 1C2 J=1ls4a
0C45 REAC (5,16421 (XGAM{T},0=1,59}
Cram REAC (S54142) (XNRM{[}el=1,99)
CCat REAL (5,142) (XWCIB(I) 121,99
CC49 KO=zK{J)
cC4d WRITE 16,89) KC 3
cesn D0 S8 I=14973 3
oCsl WRITE (69971 1oeXCAM{T) o XNAM(]) oXwF1R(]) b
noN2 98 CONTINUE
cons WRITE (6,6C)
CCha 00 1C3 f=1,79
oYy XG=XGAM(])
(ALY YGAMITJ)=XG
cnat XN=XARME])
(L E] YNRMUL D) =XN
ALK AW=XnEIB([) :
COnt 1C3 yYWEIB(I,sJ)2XN
ccet 1C2 CONTINUE
ccer AUNIF=C, ,
CCh3 BUNIF22,8((3,/2.)8¢,5)%500,
o4 RALP=(AMU/GAMMA{ ] . 4] /WBET) )@ *WBET
- CCes WRITE (6+30) ALPLAMAMU,SIGoWALP,,WBET
Cces AMUL=ALOG(ANUSS2/ ((AML*$2¢S[Ge82)%s,5))
reet SIGL=(ALOGU(SIGEe2+AMUSS2) /ANUSS2) )%, 5
cCe8 AMU=AMY |
CCéI SIG=S51G1
. ccre 0O 71C I=1.6
cerl $0 72C J=),4
cory N0 720 KK=1,2
cCct3 [PFllyJoKK)=C
CCr4 INPF(T,J,KK)=C
ccis IWPFLleJeKK)=0
ceve TUpF it ~ =0 -1
cern 73C CONTINUE
CcC78 12C CONTINLE
cc1a T1C CONTINGE
ccen ITEN=C
ccal DO 7CC Lreoe=1,iCre
cCa2 1z6
ceas NCELL=NCEL(T)
QCe4 117 NO=NT DD
ceces IN=NCELL
]
1
117 !
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cese
ocer
cces
(N1
0C90
0C9t
ccaz
0093
0C3%
0C9S
[ 1412
ceev
0c98
0099
oice
010t
0102
olc3
(e o)
01cs
0106
ainr
olca
01C9
0110
ottt
0112
o113
olie
015
Cii6é
oIty
o1is
o119
0120
niet
0122
0123
cl24
o125
0126
o127
0124
0129
ol30
o131
o3z
0i33

127

123
1te
s

121

122

75¢C

160
T4C

MCELL=NCELL-]

XNC=NGC

00 12C J=1le4

KO2K{J)

XKO=KC

CO 127 1A=1,99
XG=YGAM( (A, J)
XN=YNRM{TA,J)
AW=YWELIB(TA, I}
XGAM([A)=XG

XNRM(IA)=XN

XMEIB(IA)=XW

CONTINVE

€O 119 JX=LsMCELL

ZJ=Jx

IMARK(JIX)=2ZJ/2N
IMa2MARK L JX)

DO 123 L=1.99

XL =L

XL=xL/1C0.

IF (ZM.GE.XL) GO TC 123
GM=XGAMIL-1) (1 ZM=XL+.O1) 7,01 )% (XGAM{L)-XGAMIL~1))
60 1C 118

CONTINLE

GHARK( JX)=GM

CONTINUE

D0 121 JX=sQeMCELL
UsGMARK{JX)

CALL LCOKUP (XWEIB,U,DWE)
OW(JX)=DhE

CONTINUE

DD 122 JX=1.MCELL
UnGMARK( SX}

CALL LOOKUP (XNRM,Y,DONG)
ON{ Jx}=ONC

CONTINUE

00 740 Jxsl,MCELL
UsGMARK(JX)

IF (U.LT.bUNIF) GC TC 750
pU(JX}=l,

GO TC 740

IF (GoGT.AUNIF) GO TC 7¢0
outJxi=0.

GO T0 740
QUEIX)=LU-AUNIF ) /7 {BUNIF=-AUNTF)
CONTINLE
EG{1)sXNCOZMARKI(])
EGINCELL ) =XNOS{ 1., ~IMARKIMCELL))

118
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N

R KA &

0134
Q135
0136
0137
0138
0133
0140
olal
0142
0143
0l4s
0145
Ql46
0147
014t
Cla9
ciLsn
o151
oiL52
C153
0154
0155
0156
0is?
0154
0159
01¢€0
clel
0162
0leé3
Clée
Cles
C166
01¢7
CL£S
c16
c1ro
01N
c1r2
0173
Cl74
0174
017¢
c1r?
0178
0111
oLen
clet

124
126

125

15C

17C

2¢CC

tan

180

ENTL)=XNC*ON( 1)
EN(NCELL)=XNO#*(1,.-DN(MCELL})
EW{1)=XNCeOWI 1)
EWINCELL)=XNC®(1.~OWIMCELL))
EU(L)=XNC*DU{]))
EUINCELL ) =XNOs{1.~DY(MCELL))
IF (NCELL.EQ.2) GO TC 126

00 124 JX=2,FMCELL
EGIJIX)EXNCH(IMARK (JX)~IMARK(JSX=1))
EWCIX)=XNO®(OWIUX)-OW{JIX=1))
ENLSXI=XNO®{ONIIX)-DN(JIX-1))
EULIX )= XNC* QUL IX)-CULIX=11)
CONTINUE

CO 125 1i=1,NC

Q(lIl)=C.

CONTINUE

DO 130 JI=1,NO

CALL RANOCUIEX,IY,Y)

IX=1y¥

CALL VRTGAM (ALP,LAM,Y,THCTA)
THET(II)=THETA

0O 150 JJ=1,K0

CALL RANDO(IX,1Y.2)

iXx=1y

S=-THETASALCG(2)
QUITI=QUIT)eS

CONTINUE

QUELI=QUIL)/XKC

CONTINUE

00 170 IT=1,NCELL
NGTALUIT)=C

CONTINUE

00 180 [l=],NC

DO 150 I1T=1,MCELL

IF (CUIT).LV.GMARK(IT)) GO TC 20C
GO TC 19¢C
NGTALLIT)I=NGTAL(iT)+]

GO TC 180

CONTINUE
NGTALINCELL)=NGTALINCELL)+}
CONTINUE

CSIG=C,

CSN=C,

CSw=C.,

CSus=C.

00 23C IT=},NCELL
F=NGTAL{IT)
CSIGCSIGe{UF=-FGIITI)I®82)/(EGLIT))

19
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0182
c183
Cl84
0185
0iEs
Cl187
Ojsy
cl18¢
0190
0191
0192
0193
QiS4
0195
0196
0197
[81.]
c1s9
0200
0201
g2c?
0203
cace
02C¢%
0zne
nec?
02Cs
0269
gzic
ca211
G212
0223
C2l4a
021%
0216
e2i?
0218
cei9
0220
0221
0222
0223
0224
02246
C22¢
ez227
c22a
n229

23C

231

232

39¢
3s0

490

4«80

CON2CSNO((F~ENTTIT)I®%2)J{ENLILIT)
COWsCSHA(IF-EW(IT)IE82)ZLEWLTITY)
CONTINUE
NGTAL(19)=NGTALI19eNGTAL12D;
EULLI9I=EU(L19) +EU(20)

00 232 [T=1,19

FENGTALLIT)
CSUSCSUSLIF-ELITIT)IYee2)/{EULIT))
CONTINUE

1F (CSIG.GT.CSit1)) GC Y0 260
(PFETsJol)=lPFil00104%

IF (CSIG.GT.CS2(10) 4L (C 280
IPFLL4Ja2)2tPF(leJe2)+1

IF (CSNLGT.CSLIIYY GL YO 230C
INPFULeds 1) =INPF(T,3s10¢1

IF (CSN.GTLCS2(1)) GC TO 32¢C
INPF{T4Je2)=INPFETdy2)e)

AF (CSW.GT.CS1LI) GG TO 340

IWPFLL o Jo L) =IWPFiTsJel)el

1F {CSH.GT.CS2(8)) GC TC 764
TWPF{leJe2)sluPFllods2inrl

IF 1CSU.GT.25.9489}) GC TC 7eo?
TUPF(L gy 1) nTUPFISeJoldel

IF 1CSUGT.28.869F GC TO 120
TUPF{Tode2)=iUPFLT,  1e2)01
CONTINUF

ITEN=ITENeL

[F (ITEN.LTLS0) GU TC 100
WRITE (6,7CY LCOPLALPLAF

D0 37C KK=},2

WRITE (6,75) KK

WRETE (6477) (NIM)Mul,8)

00 380 Js)e4

CO A9C I=i,6
ICOLUMITY=IPECT 0ok
CONTINUE

WRITE 16980) KUJ)LLICCLUMIT) 121,06}
CONTINUE

WRITE(6,85)

WREITE (6o 7T) (N(M) Mx], 69

D0 «8C J=1,4

00 49C I=1,4

JCCLUML 2 INPF L JoKK)
CONTINLE

WRITE (6,80) K{J)oICCLUMIIE In],6)
CONTINUE

WRITEL6,8T)

WRITE (647T) IN(F) Msl,6)




§
3
~
A
T
y
&
Lo
} 0230 00 580 J=1,4. .
; 0231 00 590 1=1,6
i 023z 1COLUMTT Y= LWPF (14 J4KK) ,
i 02%3 99C CONTINUE L
; 02134 : WRITE (6,800 K{J) o (ICCLUMIT) ¢1=1467
: 0235 580 CONVINUE , '
H 0236 WRITE (6,88}
A 0237 WKITE (6,774 (N(M),M=1,6)
t 02138 00 88U J=1l44
: 0239 0D 890 I=xl,6 ‘ ‘
5 0240 FCCLUMET I =TUPF (T, JyKK)
& 024} 890 CONTINUE ] _ -
; 0242 WRITE (6480) KidlolICCLUMIT) 4i2l,6)
: 0243 880 CONTINUE
: 0244 WRITE (6496)
i 0245 WRITE (64771 IN{MI M=1,6)
; 0246 CO 680 J=xle4
: 0247 DO 69C J=lsb
1 0248 ICHLI = IPFUT 4 JoKK)
£ 0249 1C2C LYo INPF {14 J,KK)
; c25¢ - 1C3(1 )= [WPF {4 d4Ki0)
: 0251 ICAUEI = UPF T adoKK)
H c2s2 690 CONTINUE
: 0253 WRITE (699)) KEJDoUICLULY oL xR ob) o IC21L) olnlob)o(IC3{L)oLlelob?)
£ ColICh(L)sl=106)
Y 0254 680 CONTINUE
‘ 025% URITELS,90)
0256 ) 370 CONTINUE
i 0257 WRITE (64692) (X
g . . 0258 692 FORMAT (10X,4K IX=,120)
12 0259 WRITE (6,60)
Y 0260 ITENSC
0261 7CC CONTINUE
0262 G0 IC 100
. 0263 999 STOP
° . 02¢4 END
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b g st oo

oo
0002
cees
0CC4
00CS
0Qcé
ocer
o’ e
ocee
oc1o
cent
oc12

SUBRCUTINE LCOKLP (ARRAY,U,P)
DIMENSION ARRAY{99)
00 1CC L=1,99
IF (U.GE.ARRAY{L)) GO TC 100
Pr=t-1
P1sPl/1C0.
PuPle, 0L (U-ARRAY(L=1))/(ARRAY(L)-ARRAYL~1})
GO 1C 200
1€C CONYINUE
2Ct CONTINUE
RETLRN
END
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S iy

cect
cece?
cacy
cCCo
cCCY
0cCe
oec?
ctin

SUBRCLTINE RANCO ([X,1v,vFy)
IY=ixe45539

Flty) Sebot

1Y 1Ye2147403¢404}

YFL=]y

YFLaYFL® ,46566)3F-9

RE TLRN

ENE
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i cecet SURRCLTINE VRIGAMIALP,LAM,P, THETA)

; ccaz ALAV=LAM
: 0co3 AMUSALP/ (ALAM=1,)
. €C04 50 X1=1./AMy
H cees peLav-~1
i ceco ICCLNT=C
: ooc? 160 v=1.
: 0Cce s=1.
; ccea D0 15C K=1,M
‘ cel10 FK =K
i o011 VEVE(ALPEX] ) /FK
i oc12 S=Sey
i cC13 15C CONTINGE
! CCl4 X?‘XI‘HS‘EXFG-ALP.XHD-(l--Pl)/IALP‘V‘EXP(-ALP‘XIH
; cols X3=x2-x1
i oclé FARS=ABS{X3)
; sc17 IF (FABS.LT.0.000001) Gu TO 200
z cCis r1=x2
! 0c19 ICOLAT=ICCUNT L
oc2o0 IF (ICOUNT.EQ.20) GC tO 250
cc2: G0 TC 10
0c22 200 Telu/sx2
0023 I (1.67.0.) GC TO 3co '
0C24 25C WRITE(6,240) P :
cc2s 240 FORMAT [//12H HUNG UP ON +F10.5//)
cc2e 26C PeRAKD(X)
0027 60 TC 50
0c28 3CC THETAaT
cea9 RE TLRN
£C30 END

!
H
H
i
:

i
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10.2.2 "mivEs 12"

This is the similation pro ; a X
of the program £ollows Prograi. described in Section 5.2.2.2. 4 list

AN
i
|
; k
L]
} "
i
!
i
i
}
:
P Y £
i P
¢ ¢
3
L4
*
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oy

e

06001
0002
00" 2
0004
0075
0006
0oor
0008
g02v
0012
anll
0012
0013
00}«
0015
001e
0017
ools
00t9
0020
0021
0022
0023
0024

0025
0026
0027
0028
002y
nosn

0031

0032
0031
0034
003%
0034
0037
0034
003y
0040
0041
0042
0043
004¢
0045

[aNaNa)

DIMENSTION VRTI(S1) ,WEI18(S1) 4ZLUGI51)
DIMENSTON IRANDISL) oXVRTGIS1) 4XHETB{SL) X ZLOGIST)
UDIMENSION T0820) ,1G{200 MG(20D ¢HW(20) 4401 (20}
OIMENSTION CUMIC(S])
fx=4882812%
100 IFAD [ 54251 ALPALAM AMUSIL ¢ WALP ¢WBET T | HF
25 FIRMAT ( TF10.5)
IF (ALP,5Q.999,) 5C TO 999
WR ITF ( 6494)
FORMAT (£/7/5Xo20i ¢SES3388 TR eseRe/// /)
WALP={ AMU/GAMMA(Ll.+]1, /WBET)) ssuWBET
WRITE (6+430) ALP ALAMGAMU,SIG (WALP puBET )
30 FORMAT (10X42F 10,5771 0Xe2F1Ca5/770IK02FLI.S2/17)
AMULsALUG (AMUSE2 /{ (ANUS®R ¢ SIGe®2) %,5) )
SIGI=stALIGUISIG**2+AMUSR ) FAMUSR2) ) %, )
AMLTAMUL
S1G=SIG 1L
N0 110 [=1,9
W IG(I =0,
wFIB(T ) =0,
110 ZLCGL T 120,
16=0,
Lwu=0,
L=,

G4

D

MARGINAL FOR INY SAMMA PRINO

PaTiMe /( TIMECALP)
A=ALP/( TIMZ+ALP?
VR T5{ 1)aQesALAM
XTRLaVATG( Y1)
CUMIG! 1)=XTAL
0N 120 J=1,7
Fa(QeerlAaM)s(Peny)
Pi=1,
P2si,
XJ=J
W=ALAM+X )= 1,
D0 130 1=1,J
LB ELEE T
Xi{=]
P2exiep?
Nak=1,
130 CONTINUF
VR TGLJ+1) =f ¢P] /07
XTAL=XTALSVRTS( Jo1)
CUMIGL Je1) =XTAL
12C¢ CONTINUE
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ey

004t

0047
004R
0049
6059
0041
0052
0053
0054
005%
005¢
0057
0058
0059
0020
00el
0062
0063
0064
0065
Qa0se
0067

00¢8
0069
0079
0071
0072
0073
00746
Qo018
0070
Qo?r7
0078
007e
0080
0081
0082
0082
0084
0035
00RS
0087

[aNaTal

[a¥aXal

20}

ann
2o

310

450

Let

470

480

I1G=1,-XTAL
FARSTINAL FUR wWELBULL PRIOR

o0 200 [x1,10000

CALL IANDOU(I X, Y,P)
IXstyY

THE VA=l MALPOAL(G (], /0) ) o&(], /WBET)
gal

CLOCK=D,

CALL IANDOLTI X T Vek1i
IX=1v

Ta=THE TA SALGSLF)

CLUC =TL0lkeT
IF(ZLOTKST.TIMEY GO YO 300
[FIK.L .6} 30 YO 20
Tuslwel,

GO ¥hO200

“=ke ]

6N TN 250
WETBIK+1)=%E[R{Kel}e],
CONTINUF

JO 310 I=1,8

wEIB{ § f=wF 1B{ 1) /10000,
iW=IN/12000,

MARGINAL FOR LOGNORMAL PRIOR

07 400 1=]1,10000

Axl,

DD 450 J=1,12

CALL R_NDOLEXHI YY)

Ix=1Y

LAmheY
THETVA=F XP{ {A=6, 0) ®SI5+AMY)
K=

CLOCK=D,

CALL RANUC{TIXol V4F)

Ix=tvy

Ta=THE TA®A L OG(F)
CLOCK=ZLOZKe T
IFECLOCK.3 T, TIPE) GO TO %80
IF {KLT.8) 50 TO 470
IL=20*1,

GO T2 400

Kekel

G0 1D 460
LLCGIXK41)I=2LOSIKeL N0,
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P
0059
0oye
0093
0092
0gv3
0094
0095
00ve
0097
0094
0099
01d¢
a0}
otoz
0103
0104
9105
0toes
0107
0106
01ne
el10
Gl
0112
0113
Oll4
0115
011
otir
olls
0119
0120
0121
al22
0i23
D124
0iz2s
012¢
o127
0128
0129
0l3n
01131
0132
0133
0l3e
013y

4C0

1c

N

96

ie

(X1

700

450

61C

K20

CONTINUE
03 410 t=],3

LLeGL 1 Is2LOSU ) /1 Daog,

LL=2L /10000,

DY 500 L =),
READ(S,%) NO
FORMAT( I5)
WITE (6,961 NU

FOBNAT (//10X,34 Nsu,f5)
READIS.10) 1214CS1,C82

FONRATIT 10,2710, 5)
JC a2 §~

DO 809 21,401
REAN(S, %) Ipty:
SRR LT RIRETYY
CONTINIE

XNO=ND

LN TON I=1,a

XVR TGl T )ewpY5(]) s XNO
XWEIBL Thawe tA[T ) exnD
KZlﬂG‘l"llQS(l'.lND
COANTINUF

XL Gap 5 exNy

XI hal We XNQ
XIL =20 #XNO

IPGL=0

IPuls

IPL =N

IPGa=y

1P h2=0

Py 220

M 90N 1nQP=y,1 000
08 499 {a),8
IRAND( 1 )20

[EX D]

VO 610 1=y ,C

IGLT j=n

HG( 1 )1=0,

LUIRRELN

HLUl)=n,

CONTINUE

PO S1n [1=3,ND
CALL FANIOIIX,T Y, 2)
IXsty

00 %20 J=),n

IF (2.t Cumisea) 5o T0 530

CONTINUE
IR=lRe
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!
i
;
i
:

'-—v‘(’w—

S P

nl

0136
0137
0138
0139
2140
014t

Cle2
0163
0l4%
0145
0l3e
0167
0led
0149
0150
0is)
0152
0153
0154
015¢
0156
0187
0158
G15%
0io0
0lel
016z
0163
0lo4
0165
0le66
0le?
0168
0lv9
o170
o171
0372
o173
0174
0175
0176
0Lt
0178
0179
ola0
01481

G0 T Si0

530 [RANDCJ)I=[FANDL Jle]

310 CONTINUE
IF (LIOP.NF.1} GO TO 9NO
WRITEL 5,9)

99 FORMAT {//7/1BX+2H K¢S X9 EXPECTED 6X93H EXPECTED, 6K, 94 EXPECTED,
LoXo 9 NBSEPVE) F25XJ OH INY GAMMASX o104 MWETBILL »5Ky LOH LUG NIRML
2770
D0 800 I=1,8

Jag-1
WRITF € 6998) LIy XVRTS(ID o XWEIBII) oXZLOG(T) 4 IRAND (L)
98 FIPMATE LOX ;1 10,5XeFL0e5 ¢S XoF10e5¢3X oFL)e5¢5K0110)
800 CONTIVUF <
WRITE C6eQT) XIGoXZWoXZL IR
9T FORMATI LOXs8H NVER T oTXoF10.5 o5KoF 1045 45X 4F1).5,5Xe 110}
Q10 10I=X 1)
PO 629 J=1.,1n01
1IGCLI=IGL L) TRANDL D) -~
HGE 1 1=HGE L& XVE TG( J)
HR{L)sHW( LYo XNETR( J)
HLUL)=HLl 13eXZLOGE N
620 CONTINUE
1GS=15¢ 1)
HG S=HG( 1)
HiwS=pwl 1)
H S=t (1)
IF CIC1.EQ.2) 5O TD 668
DU 630 122,401
Ji=ziD(I=1)¢1
J2=100 1)
DO 840 J=J],d2
IGL1)I=1GC T JeiRANDC )
HGE I )=HGL [ )eXVR TG J)
HUO T )=sHW T JeXUFERL 4)
MLOTI=RLOR ) XZLOGE D)
€40 CONTINUE
1IGS=IGSe 31}
HG S2HG SeHGH D)
Hu S HWS+HW( 1)
HL Sl SeHL(T)
630 CONTINUE
645 IG{IC1)I=ND=-1GS
HGUIC 1 b =XNO=HG S
HWEIC 1) s XNC=4 WS
HLEIC L) mXND~HLS
CSG=0,
CSw=0,
CSL=0,
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e o Syt e v

BranSaking i LS of

TR T

0laz
0ls3
ol84
0lRS
Oléo
0187
Olus
Clu%
019¢C

191
0192
Q193
019«
01835
0196
0197
0198
0199
3208
0201
0202
0203
0204
o2u%
0206
0207

0208
J209
0213
0211
0212

656

U0 6% J=1,171
G= GO}

LSGeLSGHLEG-HG 1)) 982} 7HGLT)
CSwlSwel {G-HW{T)) ®82) Mull)
CSLsCSLA(IG=4LET)) o82) /HL(T)

CONTIVIE

IF (1JNP.NE. L) GU TO 920

WCITFL 699300 SGoC SW L SL 4CSL 4CSL9CSE 9C824C52,4C82

93 FOPMATL f7/710% 10 (i
€05/

95
Q20

930
940

550

560

$70
900

92
500

939

MLITE { 6495)

FORMAT (//7/10%,1 4

IF (0S6.5T7.281)
PGi=sIPGle]

IF {CSG.6T.LS2)
[PG2=IPG2e

IF (CSKGTLIST)
Pul=lPuiel

IF (CSw.5T.0S2)
Pu2=1oW2e ]

IF (CSLGTLLS1Y
IPLl=slPL e}

IF (CSL.GT.LS2)
1Pt 2=IPL2¢ 1
CONTINWE

MITE (6492) 1PG)o1P52 41 PHLIPW2 I PLL,LFLZ o
FORMAT (///10x, 80 SURMARY77710%,15]." TNV GRHRA,%X,2 i377

ClOX,10W WEIBULL +5X4215//710X,10H LOG NORML (5K ,2(5//)

WITE { 6,94)
CONTINWF

GO TC too
svop

CND

Gu
GU
GO
GO
G0

Go

sedeb s/ / /)

6
0
TC
T0
™

0

SQUARE VALUES//1)C43F13,57 10X, 3F30.57 10K, 3F L

930
960
%0
W0
9Td

900
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.

000!
000/
0003
0004
0005
0006
0007
00"8

SUBROUTINE RANDOD (1Xe1YyYFL)

1Y=IX*565536
IFLIY) 54646
5 IV=IV4214748366 T}
6 YFL=lY
YFL=VFL$. 465661 -9
RETLRN
END
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SECTION 11.0 REFERENCES AND BIBLIOGRAPHY

Section 11.1 of this report contains a complete list of all the refer-
ences uged for this study, whereas, Section 11.2 is a general bibliography
containing sources of material on Bayes reliebility, in general, and is
meant only for the readers use and convenience.
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